Dynamic strength criteria of prestressed reinforced concrete structures with combined strength
https://doi.org/10.33979/2073-7416-2021-97-5-51-61
Abstract
Dynamic strength criteria and crack resistance criteria are given for a typical plane-stressed reinforced concrete element with prestressed reinforcement in one direction. The criteria are constructed by generalizing the theory of plasticity of concrete and reinforced concrete G.A. Geniev on the area of existence of tensile stresses: "tension- tension" and "compression- tension". In general terms, the crack resistance condition and strength condition of a prestressed reinforced concrete plane-stressed element are presented in the form of an ellipse in the coordinates of the main stresses. In this case, in contrast to the criteria of crack resistance of a flat unstressed element, the principal axes of the ellipse don't pass through the origin. The results of a comparative analysis of the calculated and experimental data on crack resistance and strength for prestressed reinforced concrete in the support zone of the beam of a monolithic reinforced concrete frame tested for a given design load and a special dynamic effect are given.
About the Authors
T. A. IliushchenkoRussian Federation
Tatiana A. Iliushchenko - postgraduate student of unique buildings and structures, Southwest State University; engineer, Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences.
Kursk; Moscow.
N. V. Fedorova
Russian Federation
Natalia V. Fedorova - doctor of Technical Sciences, Professor, Head of the Department of Architectural and Construction Design, Director of the branch of Moscow State University of Civil Engineering (National Research University) (MGSU) in Mytishchi, Moscow State University of Civil Engineering (National Research University) (MGSU); leading researcher, Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences.
Moscow.
References
1. SP 385.1325800. 2018. Zashchita zdanij i sooruzhenij ot progressiruyushchego obrusheniya. Pravila proektirovaniya. Osnovnye polozheniya [Protection of buildings and structures from progressive collapse. Design rules. The main provisions]. M.. Standartinform, 2018. S. 19 (rus)
2. UFC 4-023-03. Unified Faclities Criteria (UFC). Design of Buildings to Resist Progressive Collapse Text. Department of Defense USA, 2010. 176 p.
3. GSA. Alternate path analysis & design guidelines for progressive collapse resistance, Washington, D.C., October 2016, 203 p.
4. DBN V.1.2-14-2009. Obshchiye printsipy obespecheniya nadezhnosti i konstruktivnoy bezopasnosti zdaniy, sooruzheniy stroitel'nykh konstruktsiy i osnovaniy [General principles of ensuring the reliability and structural safety of buildings, structures of structures and foundations]. Kiev. Minregionstroy Ukrainy, 2009. 43 p. (ukr)
5. Klyueva N.V., Koren'kov P.A. Metodika eksperimental'nogo opredeleniya parametrov zhivuchesti zhelezobetonnyh ramno-sterzhnevyh konstruktivnyh system [Method of experimental determination of parameters of survivability of reinforced concrete frame-bar structural systems] // Promyshlennoe i grazhdanskoe stroitel'stvo. 2016. No2. S.44-48. (rus)
6. Kolchunov V.I., Osovskih E.V., Al'kadi S.A. Deformirovanie i razrushenie zhelezobetonnyh ramno-sterzhnevyh prostranstvennyh konstruktivnyh sistem mnogoetazhnyh zdanij v zapredel'nyh sostoyaniyah [Deformation and destruction of reinforced concrete frame-bar spatial structural systems of multi-storey buildings in extreme states] //Promyshlennoe i grazhdanskoe stroitel'stvo. 2017. №. 8. S. 73-77. (rus)
7. Fedorova N.V., Ngoc V.T. Deformation and failure of monolithic reinforced concrete frames under special actions //Journal of Physics: Conference Series. - IOP Publishing. 2019. Т. 1425. №. 1. С. 012033
8. Y. Xiao, Y.B. Zhao, F.W. Li, S. Kunnath, H.S. Lew, Collapse test of a 3-story half-scale RC frame structure, Struct. Congr. 2013, American Society of Civil Engineers, Reston, VA, 2013. Pp. 11-19.
9. H.M. Elsanadedy, T.H. Almusallam, Y.A. Al-Salloum, H. Abbas, Investigation of precast RC beamcolumn assemblies under column-loss scenario // Constr. Build. Mater. 142 (2017) 552-571.
10. Huynh C. T., Park, J., Kim J. and Hyunhoon Progressive Collapse Resisting Capacity of Reinforced Concrete Beam-Column Sub-Assemblage // Magazine of Concrete Research. 2011. Vol. 63. Issue 4. Pp. 297-310.
11. Yu J., Gan Y. P., Liu J. Numerical study of dynamic responses of reinforced concrete infilled frames subjected to progressive collapse //Advances in Structural Engineering. 2020. С. 1369433220965273
12. Y.-L. Fan, J. Wang, and H.-L. Wang, Experimental study on collapse performance of one-story reinforced concrete frames using external prestressing tendons // Journal of Central South University. 2018. Vol. 49. No. 5. P. 1244-1253.
13. Yi, W. J., He, Q. F., Xiao, Y., Kunnath, S. K.. Experimental study on progressive collapse resistant behavior of reinforced concrete frame structures // ACI, 105(4), 2008. Pp. 433.
14. Yang T., Chen W., Han Z. Experimental Investigation of Progressive Collapse of Prestressed Concrete Frames after the Loss of Middle Column // Advances in Civil Engineering. 2020. Т. 2020.
15. Qian K., Li Z. Z., Cen F. X., Li B. Strengthening RC Frames against Disproportionate Collapse by PostTensioning Strands // Structures Conference 2018: Blast, Impact Loading, and Response; and Research and Education. - Reston, VA: American Society of Civil Engineers, 2018. С. 283-290.
16. Qian K., Li B., Ma J. X. Load-carrying mechanism to resist progressive collapse of RC buildings // Journal of Structural Engineering. 2015. Т. 141. №. 2. С. 04014107
17. Fedorova N.V., Iliushchenko T.A. Influence of pre-stressing over parameters of diagram of staticdynamic deformation of RC elements // IOP Conference Series: Materials Science and Engineering. - IOP Publishing, 2019. Т. 687. №. 3. С. 033033.
18. Geniev G.A., Kolchunov V.I., Klyueva N.V. i dr. Prochnost' i deformativnost' zhelezobetonnyh konstrukcij pri zaproektnyh vozdejstviyah [Strength and deformability of reinforced concrete structures under beyond design basis impacts]. M.. ASV, 2004. 216 s. (rus)
19. Kolchunov V.I., Klyueva N.V., Androsova N.B., Buhtiyarova A.S. ZHivuchest' zdanij i sooruzhenij pri zaproektnyh vozdejstviyah [Survivability of buildings and structures under beyond design basis impact]. M.. ASV, 2014. 208 s. (rus)
20. Geniev G.A., Kissyuk V.N., Tyupin G.A. Teoriya plastichnosti betona i zhelezobetona [The theory of plasticity of concrete and reinforced concrete]. M.. Strojizdat, 1974. 316 s. (rus)
21. Kolchunov V.I., Iliushchenko, T.A. Crack resistance criterion of plane stress RC elements with prestressed reinforcement // Journal of Physics: Conf. Series, 2020. Vol. 1425. 012095
22. SP 63.13330.2018. Betonnye i zhelezobetonnye konstrukcii. Osnovnye polozheniya [Concrete and reinforced concrete structures. Basic Provisions.]. M.. Standartinform, 2018. S. 152 (rus)
23. Iliushchenko T.A., Kolchunov V.I., Fedorov S.S. Treshchinostojkost' prednapryazhennyh zhelezobetonnyh ramno-sterzhnevyh konstrukcij pri osobyh vozdejstviyah [Crack resistance of prestressed reinforced concrete frame-rod structures under special influences] // Stroitel'stvo i rekonstrukciya. 2021. № 1(93). S. 74-84. (rus)
24. Geniev G.A. Ob ocenke dinamicheskih effektov v strezhnevyh sistemah iz hrupkih materialov [On the assessment of dynamic effects in rod systems made of brittle materials] // Beton i zhelezobeton. 1992. №9. S. 25-27. (rus)
Review
For citations:
Iliushchenko T.A., Fedorova N.V. Dynamic strength criteria of prestressed reinforced concrete structures with combined strength. Building and Reconstruction. 2021;(5):51-61. (In Russ.) https://doi.org/10.33979/2073-7416-2021-97-5-51-61