Preview

Building and Reconstruction

Advanced search

Survivability of the frame-rod reinforced concrete building framework in accidental action

https://doi.org/10.33979/2073-7416-2021-97-5-40-50

Abstract

A methodology and an algorithm for calculating the survivability parameters of a long-term deformable reinforced concrete building frame in extreme states are presented. Analytical dependencies for determining the value of the creep measure are taken in accordance with the use of approximate dependencies from the recommendations of the NIIZHB. On this basis, a method is proposed for determining the cross-section bending stiffness of the frame elements. The deformation criterion of a special limiting state is formulated taking into account the nonequilibrium processes of prolonged deformation of the structural system elements. The numerical analysis results of the longterm deformable reinforced concrete frame survivability potential with a sudden removal of the one structural element, taking into account the long-term deformation prehistory of the considered building frame under an operating load, are presented. The exposure of the structural system survivability from the its loading moment to its transformation into a kinematically variable system has been determined.

About the Authors

N. B. Androsova
Orel State University named after I.S. Turgenev; Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences
Russian Federation

Natalia B. Androsova - candidate of technical science, docent, head of the department of building constructions and materials, Orel State University named after I.S. Turgenev; starshiy nauchnyy sotrudnik, Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences.

Orel; Moscow.



V. I. Kolchunov
Moscow State University of Civil Engineering; Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences
Russian Federation

Vitaly I. Kolchunov - doctor of Technical Sciences, professor of the department of reinforced concrete and stone structures, Moscow State University of Civil Engineering (National Research University (MGSU); glavniy nauchnyy sotrudnik, Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences.

Moscow.



References

1. Almazov V.O. Problemy progressiruyushchego razrusheniya // Stroitel'stvo i rekonstrukciya. 2014. №6. S. 3-10.

2. Bondarenko V.M. Silovoe deformirovanie, korrozionnye povrezhdeniya i energosoprotivlenie zhelezobetona. Kursk: YUgo-zap. gos. un-t, 2016. 68 s.

3. Geniev G.A., Pyatikrestovskij K.P. Voprosy dlitel'noj i dinamicheskoj prochnosti anizotropnyh konstrukcionnyh materialov. GUP CNIISK im. V.A. Kucherenko, 2000. 38 s.

4. Vedyakov I.I., Eremeev P.G., Odesskij P.D., Popov N.A., Solov'ev D.V. Analiz normativnyh trebovanij k raschetu stroitel'nyh konstrukcij na progressiruyushchee obrushenie // Vestnik NIC Stroitel'stvo. 2019. №2. S. 15-29.

5. Eryshev V.A., Karpenko N.I., Rimshin V.I. The Parameters Ratio in the Strength of Bent Elements Calculations by the Deformation Model and the Ultimate Limit State Method // IOP Conference Series: Materials Science and Engineering. 2020. 753, 022076. https://doi.org/10.1088/1757-899X/753/2/022076.

6. Trekin N.N. Kodysh E.N. Osoboe predel'noe sostoyanie zhelezobetonnyh konstrukcij i ego normirovanie // Promyshlennoe i grazhdanskoe stroitel'stvo. 2020. №3. S. 4-9.

7. Radchenko A., Radchenko P., Batuev S., Plevkov V. Modelirovanie razrusheniya zhelezobetonnyh konstrukcij pri udare // Architecture and Engineering, 2019. T 4. №3. S. 22-29

8. Travush V.I., Fedorova N.V. Survivability of structural systems of buildings with special effects / V.I. Travush, N.V. Fedorova // Magazine of Civil Engineering. 2018. №5. p. 73-80. https://doi.org/10.18720/MCE.81.8.

9. Tamrazyan A.G. Tekhnologiya rascheta zhelezobetonnyh konstrukcij pri pozhare posle zemletryaseniya // Beton i zhelezobeton. 2020. № 1. S. 49-56.

10. Shapiro G.I., Smirnov A.V. Calculation model of typical panel building conjugation with large-span frame construction // IOP Conference Series: Materials Science and Engineering. 2018. 012090. https://doi.org/10.1088/1757-899X/456/1/012090

11. Isobe D. Progressive Collapse Analysis of Structures. In: Progressive Collapse Analysis of Structures. Elsevier. 2018. 260 p. https://doi.org/10.1016/B978-0-12-812975-3.00001-3.

12. Stylianidis P.M., Nethercot D.A., Izzuddin B.A., Elghazouli A.Y. Study of the mechanics of progressive collapse with simplified beam models // Engineering Structures. 2016. 117. P. 287-204. https://doi.org/10.1016/j.engstruct.2016.02.056

13. Cha E.J., Ellingwood B.R. Seismic risk mitigation of building structures: The role of risk aversion. Structure safety. 2013. 40, P.11-19. https://doi.org/10.1016/j.strusafe.2012.06.004.

14. Kodysh E.N., Trekin N.N. Osoboe predel'noe sostoyanie zhelezobetonnyh konstrukcij pri avarijnyh vozdejstviyah. Beton i zhelezobeton - problemy i perspektivy // Vestnik NIC «Stroitel'stvo». 2018. №1. S.120-125.

15. Klyueva N.V., SHuvalov K.A. Issledovanie dinamicheskih dogruzhenij v zhelezobetonnyh nerazreznyh balkah s ispol'zovaniem statiko-dinamicheskih diagramm // Vestnik MGSU. 2011. №2-2. S. 145-152.

16. Fedorova N.V., Koren'kov P.A. Statiko-dinamicheskoe deformirovanie monolitnyh zhelezobetonnyh karkasov zdanij v predel'nyh i zapredel'nyh sostoyaniyah // Stroitel'stvo i rekonstrukciya. 2016. №6. S. 90-100.

17. Adam J.M., Parisi F., Sagaseta J., Lu X. Research and practice on progressive collapse and robustness of building structures in the 21st century // Engineering Structure. 2018. 173. P.122-149. https://doi.org/10.1016/j.engstruct.2018.06.082.

18. Fedorova N. The dynamic effect in a structural adjustment of reinforced concrete structural system / Fedorova N., Kolchunov V., Tuyen V.N., Dinh Quoc P., Medyankin M. // IOP Conference Series: Materials Science and Engineering. 2020. T. 869. S.052078. https://doi.org/10.1088/1757-899X/869/5/052078.

19. Bondarenko V.M., Kolchunov V.I. Koncepciya i napravleniya razvitiya teorii konstruktivnoj bezopasnosti zdanij i sooruzhenij pri silovyh i sredovyh vozdejstviyah // Promyshlennoe i grazhdanskoe stroitel'stvo. 2013. №2. S. 28-31.

20. Fedorova N.V., Gubanova M.S. Crack-resistance and strength of a contact joint of a reinforced concrete composite wall beam with corrosion damages under loading // Russian journal of building construction and architecture. 2018. №2. P. 6-18.

21. Kolchunov V.I., Savin S.Yu. Survivability criteria for reinforced concrete flame at loss of stability / Magazine of civil engineering. 2018. 80. P. 73-80. https://doi.org/10.18720/MCE.80.7.

22. Tamrazyan A.G., Mineev T.K., Zhukova L.I. Influence of chloride corrosion on probabilistic assessment of bearing capacity of beamless slabs overlap // IOP conference series: Materials science and engineering. 2019. 012117. https://doi.org/10.1088/1757-899X/661/1/012052.

23. Kabantsev O., Mitrovic B. Modeling post-critical deformation processes of flat reinforced concrete elements under biaxial stresses // MATEC Web of Conference. 2017. 117, P. 00071. https://doi.org/10.1051/matecconf/201711700071.

24. Li J., Yao Y. A study on creep and drying shrinkage of high performance concrete // Cement and Concrete Research. 2001. 31. P. 1203-1206. https://doi.org/10.1016/S0008-8846(01)00539-7.

25. Vasanelli E., Micelli F., Aiello M.A., Plizzari G. Long term behavior of FRC flexural beams under sustained load // Engineering Structures. 2013. 56. P.1858-1867. https://doi.org/10.1016/j.engstruct.2013.07.035.

26. Bondarenko V.M., Bondarenko S.V. Inzhenernye metody nelinejnoj teorii zhelezobetona. Moskva: Strojizdat, 1982. 287 s.

27. Bondarenko V.M. Nekotorye voprosy nelinejnoj teorii zhelezobetona. Har'kov: Izdatel'stvo har'kovskogo universiteta, 1968. 323 s.

28. Rekomendacii po uchetu polzuchesti i usadki betona pri raschete betonnyh i zhelezobetonnyh konstrukcij / NIIZHB Gosstroya SSSR. - Moskva: Strojizdat, 1988. 120 s.

29. Beglov A.D., Sanzharovskij R.S. O metodah resheniya uravnenij polzuchesti betona // Stroitel'naya mekhanika inzhenernyh konstrukcij i sooruzhenij. 2005. №3. S. 55-63.


Review

For citations:


Androsova N.B., Kolchunov V.I. Survivability of the frame-rod reinforced concrete building framework in accidental action. Building and Reconstruction. 2021;(5):40-50. (In Russ.) https://doi.org/10.33979/2073-7416-2021-97-5-40-50

Views: 185


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)