Preview

Building and Reconstruction

Advanced search

Modern strength criteria for concrete under triaxial stress states

https://doi.org/10.33979/2073-7416-2021-97-5-16-30

Abstract

Reliable assessment of the strength and deformations of concrete under multiaxial stress states is important for increasing the accuracy of analysis and design. Classical strength theories do not work for such materials as concrete due to the complex shear-pryout mechanism of its structural failure. Description of the key relations of strength criteria established by G.A. Geniev, G.A. Geniev -N.M. Alikova, E.S. Leites, A.V. Yashin, S.F. Klovanich - D.I. Bezushko, K.J. Willam - E.P. Warnke and N.I. Karpenko is given. Assessment of the compliance of the design strength with the experimental data under uni-, bi- and triaxial stress states is made. Strength criteria that most closely describe the experimental data in the specific areas of the stress state are determined. It has been found out that the most developed strength conditions are the ones developed by S.F. Klovanich - D.I. Bezushko, K.J. Willam - E.P. Warnke and N.I. Karpenko. The criteria introduced by E.S. Leites and A.V. Yashin describe the experimental data under conditions of the plane stress state with sufficient accuracy. The strength conditions established by G.A. Geniev and G.A. Geniev - N.M. Alikova require careful use, taking into account their deviations from the experimental data in certain areas of triaxial stress states. Loading programs in the process of experimental research of concrete strength aimed at identifying the forms of functions of meridional and deviatoric curves more accurately have been determined.

About the Authors

V. I. Korsun
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Vladimir I. Korsun - doctor in technical sciences, professor, professor of the Higher School of Industrial, Civil and Road Construction.

St. Petersburg.



S. N. Karpenko
Research Institute of Building Physics RAASN
Russian Federation

Sergey N. Karpenko - doctor in technical sciences, chief research engineer of the laboratory "Problems of strength and quality in construction".

Moscow.



S. Yu. Makarenko
Donbas National Academy of Civil Engineering and Architecture
Ukraine

Sergey Yu. Makarenko - assistant in the department of Technical and Applied Mechanics.

Makiyivka.



A. V. Nedoresov
Donbas National Academy of Civil Engineering and Architecture
Ukraine

Andrej V. Nedoresov - candidate in technical sciences, associate Professor of the department of Reinforced Concrete Structures.

Makiyivka.



References

1. Balan T.A. Variant criteria prochnosti strukturno-neodnorodnykh materialov pri slojnonapryagennom sostoyanii [Variant of criterion of strength of structure and nonuniform materials in the process of combined stress state] // Problemi prochnosti, 1986, Number 2, Pp. 21-26. (rus)

2. Bambura A.N.; Davidenko A.I. Experimental'nye issledovaniya zakonomernosti deformirovaniya betona pri dvykhosnom sgatii [Experimental investigation of behavior of straining of concrete in the process of biaxial compression] // Stroitel'nye konstructsii. 1989, Issue 42, Pp. 95-100. (rus)

3. Busler L.E. Razrushenie betona v ysloviyakh dvykhosnogo sjatiya-rastyajenia // Новые исследования по технологии, расчету и конструированию железобетонных конструкций: сборник научных трудов [Concrete deteriotion under the conditions of biaxial compression-declamping] // Novye issledovania po technologii, raschety I konsruirovaniu gelezobetonnykh konstructsii: Edited volume / Edited by Krylov B. A.; Korovin N. N. Moscow: NIIZhB, 1980. Pp. 9-15. (rus)

4. Gvozdev A.A., Bich P.M. Prochnost' betona pri dvykhosnom napryajennom sostoynii [Concrete strength under biaxial stress state] // Beton I gelezobeton. 1974. Number 7. Pp. 10-11. (rus)

5. Geniev G.A., Kissiuk V.N., Tiupin G.A. Teoria plastichnosti betona i gelezobetona [Plasticity theory of concrete and reinforced concrete]. Moscow: Stroiizdat, 1974. 316 p. (rus)

6. Alikova N.M., Geniev G.A. Variant usloviya prochnosti betona [Variant of strength condition of concrete] / Teoreticheskie issledovaniya v oblasti stroitel'noi mechaniki prostranstvennykh sistem: Edited Volume / Edited by Erhov, M. I. Moscow: TsNIISK, 1976. Pp. 21-27. (rus)

7. Karpenko N.I., Karpenko S.N. Sostavnoi kriterii prochnosti betona pri ob'emnom napryajennom sostoyanii [Composite criterion of concrete strength under triaxia stress state] // Beton I gelezobeton - vzglyad v budushchee: scientific proceedings of the III All-Russian (II International) Conference on Concrete and Reinforced Concrete (Moscow, May 12-16, 2014): in 7 vols. t. 4. Remont, vosstanovlenie I ysilenie gelezobetonnykh kondtruktcii. Modelirovanie I mathematicheskie metody. Obshchie voprosy betonovedeniya. Organizatcia stroitel'stva I kontrol' kachestva. Moscow: MGSU, 2014. Pp. 156-165.

8. Karpenko N.I., Belostockii A.M., Pavlov A.C., Akimov P.A., karpenko S.N., Petrov A.N. Obzor kriteriev prochnosti gelezobetonnykh konstruktcii. Chast' 1: Tradicionnye podkhody I razrabotki otechestvennykh uchenykh [Review of the strength criteria of reinforced concrete structures. Part 1: Traditional approaches and developments of Russian scientists] // Phundamental'nye, poiskovye I prikladnye issledovaniya Rossiiskoi akademii architectury I stroitel'nykh nauk po nauchnomy obespecheniu razvitiya architektyry, gradostroitel'stva I stroitel'noi otrasli Rossiiskoy Federatcii v 2019 godu: Collection of scientific papers. RAASN. Moscow: Izdatel'stvo ASV, 2020, Pp. 281-289.

9. Karpenko N.I., Belostockii A.M., Pavlov A.C., Akimov P.A., karpenko S.N., Petrov A.N. Obzor kriteriev prochnosti gelezobetonnykh konstruktcii. Chast' 1: Razrabotki zarubezhnykh avtorov [Review of the strength criteria of reinforced concrete structures. Part 2: Developments of foreign scientists] // Phundamental'nye, poiskovye I prikladnye issledovaniya Rossiiskoi akademii architectury I stroitel'nykh nauk po nauchnomy obespecheniu razvitiya architektyry, gradostroitel'stva I stroitel'noi otrasli Rossiiskoy Federatcii v 2019 godu: Collection of scientific papers. RAASN. Moscow: Izdatel'stvo ASV, 2020, Pp. 290-298.

10. Klovanich S.F., Bezushko D.I. Chislennyi experiment po issledovaniu deformatcionnykh teorii plastichnosti betona [Numerical experiment based on investigation of deformation plasticity theory of concrete] // Vestnik Odesskoi gosudarstvennoi akademii srtoitel'stva I architektyri. 2006. Issue 22. Pp. 122—130. (rus)

11. Korsun V.I., Baev A.M. Vliyznie temperature ot -50 do +50°С na prochnost' I deformatcii tyazhelogo betona pri ploskom napryazhennom sostoyanii [The influence of temperature from -50 to +150 on strength and deformation of heavy concrete under plane stress] // Novye technologicheskie resheniya dlya stroitel'noy promyshlennosti Donbassa /Edited by Gorokhov, Ye. V. et al. Kyiv: UMV VO, 1989. Pp. 129—136. (rus)

12. Korsun V.I., Kalmykov Yu.Yu. Orthotropnoye deformirovanie betona pri neodnoosnykh napryazhennykh sostoyaniyakh [Orthotropic deformation of concrete under non-axial stress conditions] // Vestnik Donbasskoi gosudarstvennoi akademii srtoitel'stva I architektyri. 2004. № 2004-2(44). Pp. 28-34. (rus)

13. Korsun V.I., Makarenko S.Yu., Nedorezov A.V. Sopostavitel'nyi analis criteriev prochnosti betona dlya neodnoosnykh napryazhennykh sostoyanii [Comparative analysis of concrete strength criteria for non-axial stress states]//Sovremennoe promyshlennoe I grazhdanskoe stroitel'stvo. 2014. Т. 10. №1. Pp. 65-78.

14. Kulik I. I. Prochnost' betona pri ploskom szhtii-rastyazhenii [Concrete strength under plane compression and extension] // Voprosy stroitel'stva I architektyry. Minsk, 1977. Issue 7. Pp. 92-98. (rus)

15. Leites E.S. K utochneniu odnogo iz uslovii prochnosti betona [To improvement one from conditions of concrete strength] // Povedenie betonov I elementov gelezobetonnykh konstruktcii pri vozdeistvii razlichnoy dlitel'nosti: Edited Volume / Edited by Gvozdev, A. A.; Krylov, S. M. Moscow: NIIZhB, 1980. Pp. 37—40. (rus)

16. Pervakov V.N. Prochnost' tyazhelogo betona pri tryokhosnom napryazhennom sostoyanii «rastyazhenie-szhatie» [Strength of heavy concrete under triaxial state of stress «extension compression»] // Novoe v technologii, raschete I konstruirovanii gelezobetonnykh konstruktcii: Edited Volume / Edited by Krylov, S. M. Moscow: NIIZhB, 1984. Pp. 90-96. (rus)

17. Filonenko-Borodich M. M. Mekhanicheskie teorii prochnosti [Mechanical theory of strength]. Moscow: Publishing House of Moscow University, 1961. 94 p. (rus)

18. Yashin A.V. Criterii prochnosti I deformirovaniya betona pri prostom nagruzhenii dlya razlichnykh vidov napryazhennogo sostoyania [Strength criteria and straining of concrete under simple loading for different stress pattern] // raschet I konstruirovanie gelezobetonnykh konstruktcii: Edited Volume / Edited by Gvozdev, A. A. Moscow: NIIZhB, 1977. Pp. 48-57. (rus)

19. Yashin A.V. Macromechanica razrusheniya pri slojnykh (mnogoosnykh) napryazhennykh sostoyaniyah [Macromechanic damage under the combined stress] // Prochnostnye I deformacionnye characteristiki elementov betonnykh I gelezobetonnykh konstruktcii: Edited Volume / Edited by Gvozdev, A. A.; Gushcha, Yu. P. Moscow: NIIZhB, 1981. Pp. 3-29. (rus)

20. Chen Q.; Zhang Y.; Zhao T.; Wang Z.; Wang Z. Mesoscale Modelling of Concretes Subjected to Triaxial Loadings: Mechanical Properties and Fracture Behaviour. Materials 2021, 14, 1099. https://doi.org/10.3390/ma14051099

21. Javanmardi P. Experimental study of triaxial behavior of concrete under lateral confining stress. Open Civ. Eng. J. 2017, 11, 281-291, doi:10.2174/1874149501711010281.

22. Malecot Y., Daudeville L., Dupray F., Poinard C., Buzaud E. Strength and damage of concrete under high triaxial loading // European Journal of Environmental and Civil Engineering. 2010. №14(6-7). P. 777-803.

23. Vu X.H., Malecot Y., Daudeville L., Buzaud E. Experimental analysis of concrete behavior under high confinement: Effect of the saturation ratio//International Journal of Solids and Structures.2009.№46(5). P.1105-1120

24. Hampel T, Speck K, Scheerer S, et al. High-performance concrete under biaxial and triaxial loads. ASCE J Eng Mech, 2009,135: 1274-1280

25. Korsun V.I., Kalmykov Yu.Yu., Makarenko S.Yu. A version of the failure criterion modification for plane concrete. (2017). Key Engineering Materials. 755. Pp. 300-321. https://doi.org/10.4028/www.scientific.net/kem.755.300

26. Kupfer H. Das Verhalten des Betons unter zweiachsiger Beanspruchung // Wissenschaftliche Zeitschrift der Technischen Universitat. Dresden, 1968. № H.6. P. 1515-1518.

27. Schroder S., Opitz H. Festigkeit und Verformungseigenschaften des Betons bei zweiachsiger Druckbeanspruchung // Bauplanung-Bautechnik. 1968. 22. Jg. Heft 4. P. 190 - 196.

28. Wang, H.; Song, Y. Behavior of mass concrete under biaxial compression-tension and triaxial compression-compression-tension. Mater. Struct. 2009, 42, 241-249, doi:10.1617/s11527-008-9381-y.

29. Willam K. J., Warnke E. P. Constitutive model for the triaxial behavior of concrete // Int. Assoc. Bridge. Struct. Eng. 1974. V. 19. P. 1-31.


Review

For citations:


Korsun V.I., Karpenko S.N., Makarenko S.Yu., Nedoresov A.V. Modern strength criteria for concrete under triaxial stress states. Building and Reconstruction. 2021;(5):16-30. (In Russ.) https://doi.org/10.33979/2073-7416-2021-97-5-16-30

Views: 490


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)