Preview

Строительство и реконструкция

Расширенный поиск

АНАЛИЗ ОСОБЕННОСТЕЙ СОПРОТИВЛЕНИЯ ПРОГРЕССИРУЮЩЕМУ ОБРУШЕНИЮ КОНСТРУКТИВНЫХ СИСТЕМ ЗДАНИЙ И СООРУЖЕНИЙ ПРИ ВНЕЗАПНЫХ СТРУКТУРНЫХ ПЕРЕСТРОЙКАХ: АНАЛИТИЧЕСКИЙ ОБЗОР НАУЧНЫХ ИССЛЕДОВАНИЙ

https://doi.org/10.33979/2073-7416-2021-95-3-76-108

Аннотация

В течение всего срока службы конструкции зданий и сооружений подвержены силовым и средовым воздействиям различной природы и интенсивности. В отдельных случаях такие воздействия могут приводить к потере несущей способности конструктивных элементов здания, что в свою очередь может привести к непропорциональному отказу всей конструктивной системы - ее прогрессирующему обрушению. Крупные аварии, произошедшие на объектах капитального строительства, такие как обрушение секции многоэтажного жилого здания Ронан Пойнт (Лондон, 1968), торгового центра Сампун (Сеул, 1995), покрытия Трансвааль-Парка (Москва, 2004), здания ВТЦ (Нью Йорк, 2011) и др., наглядно продемонстрировали актуальность этой проблемы. В связи с этим в нормативных документах США, Великобритании, ЕС, Китая, Австралии, России и других стран были установлены требования о необходимости расчета конструктивных систем зданий на прогрессирующее обрушение при внезапных структурных перестройках, вызванных удалением одного из несущих элементов. Однако наблюдаемый в мировой научной литературе устойчивый рост числа новых публикаций по проблеме прогрессирующего обрушения указывает на то, что результаты таких исследований пока не дают исчерпывающих ответов на все вопросы, связанные с этим явлением. В этой связи предлагаемая обзорная статья направлена на систематизацию, обобщение и анализ новых результатов исследований по вопросам сопротивления прогрессирующему обрушению конструктивных систем зданий и сооружений, выявление новых тенденций и предложение новых направлений и задач исследований для повышения уровня конструктивной безопасности проектных решений зданий и сооружений. Для достижения указанной цели рассмотрены: природа воздействий, приводящих к прогрессирующему обрушению; особенности моделирования прогрессирующего обрушения конструктивных систем зданий и сооружений; механизмы сопротивления прогрессирующему обрушению и критерии особого предельного состояния. Особое внимание в научном обзоре уделено анализу работ, относящихся к новому направлению исследований в рассматриваемой области, связанному с оценкой несущей способности сжатых и сжато изогнутых элементов конструктивных систем, влияния на их сопротивление прогрессирующему обрушению параметров режима нагружения, деградации свойств материалов и топологии конструктивной системы. Значимость предлагаемого научного обзора состоит в том, что в нем наряду с известными и новыми результатами, представленными в англоязычной научной литературе, обобщены и проанализированы оригинальные подходы, методики и результаты исследований, опубликованные в русскоязычных научных изданиях, прежде всего входящих в RSCI Web of Science.

Об авторах

Наталия Витальевна Федорова
Национальный исследовательский Московский государственный строительный университет
Россия


Сергей Юрьевич Савин
Национальный исследовательский Московский государственный строительный университет
Россия


Список литературы

1. Pearson C., Delatte N. Ronan Point Apartment Tower Collapse and its Effect on Building Codes // J. Perform. Constr. Facil. 2005. Vol. 19, № 2. P. 172-177

2. Unified Facilities Criteria. Design of buildings to resist progressive collapse (UFC 4-023-03). Washington, DC: Department of Defence (DoD), 2009

3. Kiakojouri F. et al. Progressive collapse of framed building structures: Current knowledge and future prospects // Eng. Struct. Elsevier, 2020. Vol. 206, № December 2019. P. 110061

4. Bažant Z.P., Verdure M. Mechanics of Progressive Collapse: Learning from World Trade Center and Building Demolitions // J. Eng. Mech. 2007. Vol. 133, № 3. P. 308-319

5. Gudmundsson G. V., Izzuddin B.A. The “sudden column loss” idealisation for disproportionate collapse assessment // Struct. Eng. 2010

6. Izzuddin B.A. et al. Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework // Eng. Struct. 2008

7. Sasani M., Sagiroglu S. Progressive Collapse Resistance of Hotel San Diego // J. Struct. Eng. 2008. Vol. 134, № 3. P. 478-488

8. Федорова Н.В., Кореньков П.А. Статико-динамическое деформирование монолитных железобетонных каркасов зданий в предельных и запредельных состояниях // Строительство и реконструкция. 2016. № 6 (68). С. 90-100

9. CEN Comité Européen de Normalisation. EN 1991-1-7: eurocode 1 - actions on structures - part 1-7: general actions - accidental actions. Brussels (Belgium): CEN, 2006

10. Australian Building Codes Board (ABCB). National construction code (NCC). Council of Australian Governments. 2016

11. China Association for Engineering Construction Standardization (CECS). Code for anti-collapse design of building structures, CECS 392: 2014. Beijing (China), 2014

12. СП 385.1325800.2018 «Защита зданий и сооружений от прогрессирующего обрушения. Правила проектирования. Основные положения». Издание оф. Москва: Минстрой России, 2018. 26 с

13. Adam J.M. et al. Research and practice on progressive collapse and robustness of building structures in the 21st century // Eng. Struct. Elsevier, 2018. Vol. 173, № March. P. 122-149

14. Abdelwahed B. A review on building progressive collapse, survey and discussion // Case Stud. Constr. Mater. 2019. Vol. 11

15. Wang H. et al. A Review on Progressive Collapse of Building Structures // Open Civ. Eng. J. 2014. Vol. 8, № 1. P. 183-192

16. Byfield M., Paramasivam S. Murrah Building Collapse: Reassessment of the Transfer Girder // J. Perform. Constr. Facil. 2012. Vol. 26, № 4. P. 371-376

17. Formichi P. EN 1991 - Eurocode 1 : Actions on structures Part 1-6 General actions Actions during execution // Design. 2008. № February. P. 18-20

18. Ellingwood B.R. et al. Best practices for reducing the potential for progressive collapse in buildings // U.S. National Institute of Standards and Technology (NIST). 2007. 216 p

19. Botez M., Bredean L., Ioani A.M. Improving the accuracy of progressive collapse risk assessment: Efficiency and contribution of supplementary progressive collapse resisting mechanisms // Comput. Struct. 2016

20. Yan J. et al. Experimental and numerical analysis of CFRP strengthened RC columns subjected to close-in blast loading // Int. J. Impact Eng. Elsevier, 2020. Vol. 146, № May. P. 103720

21. Hu Y. et al. Study of CFRP retrofitted RC column under close-in explosion // Eng. Struct. 2021. Vol. 227, № October 2020

22. Li Y., Aoude H. Influence of steel fibers on the static and blast response of beams built with high-strength concrete and high-strength reinforcement // Eng. Struct. Elsevier, 2020. Vol. 221, № September 2019. P. 111031

23. Zhang C., Abedini M., Mehrmashhadi J. Development of pressure-impulse models and residual capacity assessment of RC columns using high fidelity Arbitrary Lagrangian-Eulerian simulation // Eng. Struct. Elsevier, 2020. Vol. 224, № May. P. 111219

24. Momeni M. et al. Damage evaluation of H-section steel columns under impulsive blast loads via gene expression programming // Eng. Struct. Elsevier, 2020. Vol. 219, № May. P. 110909

25. Tagel-Din H., Rahman N.A. Simulation of the Alfred P. Murrah federal building collapse due to blast loads // AEI 2006 Build. Integr. Solut. - Proc. 2006 Archit. Eng. Natl. Conf. 2006. Vol. 2006. P. 32

26. Lim K.M. et al. Prediction of damage level of slab-column joints under blast load // Appl. Sci. 2020. Vol. 10, № 17

27. Gephart M.B. Oklahoma City Bombing // Federalism-E. 2019. Vol. 20, № 1. P. 25-43

28. Sohel K.M.A., Al-Jabri K., Al Abri A.H.S. Behavior and design of reinforced concrete building columns subjected to low-velocity car impact // Structures. Elsevier, 2020. Vol. 26, № May. P. 601-616

29. Yi N.H. et al. Collision capacity evaluation of RC columns by impact simulation and probabilistic evaluation // J. Adv. Concr. Technol. 2015. Vol. 13, № 2. P. 67-81

30. Gholipour G., Zhang C., Mousavi A.A. Effects of axial load on nonlinear response of RC columns subjected to lateral impact load: Ship-pier collision // Eng. Fail. Anal. Elsevier, 2018. Vol. 91, № November 2017. P. 397-418

31. Gholipour G., Zhang C., Mousavi A.A. Numerical analysis of axially loaded RC columns subjected to the combination of impact and blast loads // Eng. Struct. Elsevier, 2020. Vol. 219, № January. P. 110924

32. Abdelkarim O.I., ElGawady M.A. Dynamic and static behavior of hollow-core FRP-concrete-steel and reinforced concrete bridge columns under vehicle collision // Polymers (Basel). 2016. Vol. 8, № 12. P. 1-17

33. Wu M., Jin L., Du X. Dynamic responses and reliability analysis of bridge double-column under vehicle collision // Eng. Struct. Elsevier, 2020. Vol. 221, № June. P. 111035

34. Li R.W., Zhou D.Y., Wu H. Experimental and numerical study on impact resistance of RC bridge piers under lateral impact loading // Eng. Fail. Anal. 2020. Vol. 109, № November 2019. P. 1-19

35. Demartino C., Wu J.G., Xiao Y. Response of shear-deficient reinforced circular RC columns under lateral impact loading // Int. J. Impact Eng. 2017. Vol. 109. P. 196-213

36. Радченко П.А. и др. Численное моделирование разрушения оболочки из бетона и фибробетона при импульсном воздействии // Омский научный вестник. 2015. Vol. 143, № 3. P. 345-348

37. Радченко П.А. et al. Моделирование разрушения железобетонных кон - струкций при ударных нагрузках // Строительство и реконструкция. 2015. № 6 (62). С. 40-48

38. Белов Н.Н. et al. Математическое моделирование процессов динамического разрушения бетона // Механика твердого тела. 2008. № 2. P. 124-133

39. Афанасьева С.А. и др. Разрушение бетонных и железобетонных плит при высокоскоростном ударе и взрыве // Доклады академии наук. 2005. Vol. 401, № 2. С. 185-188

40. Liu B. et al. Experimental investigation and improved FE modeling of axially-loaded circular RC columns under lateral impact loading // Eng. Struct. Elsevier Ltd, 2017. Vol. 152. P. 619-642

41. Yankelevsky D.Z., Karinski Y.S., Feldgun V.R. Dynamic punching shear failure of a RC flat slab-column connection under a collapsing slab impact // Int. J. Impact Eng. Elsevier, 2020. Vol. 135, № September 2019. P. 103401

42. Agarwal J. et al. Robustness of structures: Lessons from failures // Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng. 2012. Vol. 22, № 1. P. 105-111

43. Frühwald Hansson E. Analysis of structural failures in timber structures: Typical causes for failure and failure modes // Eng. Struct. Elsevier Ltd, 2011. Vol. 33, № 11. P. 2978-2982

44. Oehme von P., Werner V. Schäden an Tragwerken aus Stahl. Schadenfre. Stuttgart: Fraunhofer IRB Verlag, 2003. 152 p

45. Blaß H.J., Frese M. Schadensanalyse von Hallentragwerken aus Holz // DIBt Mitteilungen. 2011. Vol. 42, № 1. P. 25-25

46. Huber J.A.J. et al. Structural robustness and timber buildings - a review // Wood Mater. Sci. Eng. Taylor & Francis, 2019. Vol. 14, № 2. P. 107-128

47. Dietsch P., Winter S., Dietsch D.P. G Typische Tragwerksmängel im Ingenieurholzbau und Empfehlungen für Planung , Ausführung und Instandhaltung // 6. Grazer Holzbau FachtagungAt: Graz, Austria. 2008. P. 1-16

48. Белостоцкий А.М.. Павлов А.С. Расчет конструкций большепроолетных зданий с учетом физической, геометрической и конструктивной нелинейностей // Int. J. Comput. Civ. Struct. Eng. 2010. Vol. 6, № 1-2. C. 80-86

49. Abdelwahed B. A review on building progressive collapse, survey and discussion // Case Stud. Constr. Mater. 2019. Vol. 11. P. e00264

50. ГОСТ 27751-2014 Надежность строительных консрукций и оснований. Основные положения. М.: ОАО «НИЦ «Строительство»», 2019

51. General Services Administration (GSA). Alternative path analysis and design guidelines for progressive collapse resistance. Washington, DC: Office of Chief Architects, 2013

52. Fan W., Liu B., Consolazio G.R. Residual Capacity of Axially Loaded Circular RC Columns after Lateral Low-Velocity Impact // J. Struct. Eng. 2019. Vol. 145, № 6. P. 04019039

53. Barabash М.S., Romashkina M.A. Lira-Sapr Program for Generating Design Models of Reconstructed Buildings // Int. J. Comput. Civ. Struct. Eng. 2018. Vol. 14, № 4. P. 70-80

54. Бондаренко В.М. Коррозионные повреждения как причина лавинного разрушения железобетонных конструкций // Строительная механика и расчет сооружений. 2009. № 5. С. 13-17

55. Назаров Ю.П. и др. Басманный рынок: анализ конструктивных решений и возможных механизмов разрушения зданий // Строительная механика и расчет сооружений. 2007. № 2 (211). С. 49-55

56. Бондаренко В.М., Колчунов В.И. Экспозиция живучести железобетона // Известия высших учебных заведений. Строительство. 2007. № 5 (581). С. 4-8

57. Прасолов Н.О., Колчунов В.И., Клюева Н.В. Влияние коррозионных повреждений элементов на живучесть железобетонных рамно-стержневых систем // Успехи строительной механики и теории сооружений. Саратов: СГТУ, 2010. С. 117-122

58. Kolchunov V.I., Savin S.Y. Survivability criteria for reinforced concrete frame at loss of stability // Mag. Civ. Eng. 2018. Vol. 80, № 4. P. 73-80

59. Tamrazyan A.G., Popov D.S., Ubysz A. To the dynamically loaded reinforced-concrete elements’ calculation in the absence of adhesion between concrete and reinforcement // IOP Conf. Ser. Mater. Sci. Eng. 2020. Vol. 913. P. 022012

60. Тамразян А.Г., Попов Д.С. Напряженно-деформированное состояние коррозионно-поврежденных железобетонных элементов при динамическом нагружении // Промышленное и гражданское строительство. 2019. № 2. С. 19-26

61. Селяев В.П., Селяев П.В., Алимов М.Ф., Сорокин Е.В. Оценка остаточного ресурса железобетонных изгибаемых элементов, подверженных действию хлоридной коррозии // Строительство и реконструкция. 2017. № 6. С. 49-58

62. Селяев В.П. и др. Оценка ресурса железобетонного изгибаемого элемента, подверженного действию хлоридной коррозии, по прочности наклонного сечения // Региональная архитектура и строительство. 2008. № 3 (36). С. 104-115

63. Tamrazyan A.G., Avetisyan L.A. Behavior of compressed reinforced concrete columns under thermodynamic influences taking into account increased concrete deformability // IOP Conf. Ser. Mater. Sci. Eng. 2018. Vol. 365. P. 052034

64. Avetisyan L.A., Chapidze O.D. Estimation of reinforced concrete seismic resistance bearing systems exposed to fire // IOP Conf. Ser. Mater. Sci. Eng. 2018. Vol. 456, № 1. P. 012035

65. Федоров В.С., Левитский В.Е. Термосиловое сопротивление железобетонной балки при ограничении перемещений на опорах // Строительство и реконструкция. 2020. № 6 (92). С. 66-74

66. Федоров В.С., Левитский В.Е., Соловьев И.А. Модель термосилового сопротивления железобетонных элементов стержневых конструкций // Строительство и реконструкция. 2015. № 5 (61). С. 47-55

67. Федоров В.С., Левитский В.Е. Оценка огнестойкости внецентренно сжатых железобетонных колонн по потере устойчивости // Строительная механика и расчет сооружений. 2012. № 2 (241). С. 53-60

68. Гениев Г.А., Кисюк В.Н., Тюпин Г.А. Теория пластичности бетона и железобетона. М.: Стройиздат, 1974. 316 с

69. Баженов Ю.М. Бетон при динамическом нагружении. Москва: Стройиздат, 1970. 271 p

70. Nam J.W. et al. Analytical study of finite element models for FRP retrofitted concrete structure under blast loads // Int. J. Damage Mech. 2009. Vol. 18, № 5. P. 461-490

71. Malvar L.J. Review of Static and Dynamic Properties of Steel Reinforcing Bars // Mater. J. 1998. Vol. 95, № 5. P. 609-616

72. Федорова Н.В., Медянкин М.Д., Бушова О.В. Экспериментальное определение параметров статико-динамического деформирования бетона при режимном нагружении // Строительство и реконструкция. 2020. № 3 (89). С. 72-81

73. Федорова Н.В., Медянкин М.Д., Бушова О.В. Определение параметров статико-динамического деформирования бетона // Промышленное и гражданское строительство. 2020. № 1. С. 4-11

74. Колчунов В.И., Колчунов В.И., Федорова Н.В. Деформационные модели железобетона при особых воздействиях // Промышленное и гражданское строительство. 2018. № 8. С. 54-60

75. Митасов В.М., Стаценко Н.В. Динамический аспект образования стохастических трещин в бетонных и железобетонных конструкциях // Известия высших учебных заведений. Строительство. 2016. № 8 (692). С. 5-11

76. Kolchunov V., Androsova N., Savin S. Cross section structure influence to deformation of construction at accidental impacts // MATEC Web Conf. / ed. Volkov A., Pustovgar A., Adamtsevich A. 2018. Vol. 251. P. 02029

77. Sasani M., Sagiroglu S. Progressive collapse resistance of hotel San Diego // J. Struct. Eng. 2008

78. Song B.I., Sezen H. Evaluation of an existing steel frame building against progressive collapse // Proc. 2009 Struct. Congr. - Don’t Mess with Struct. Eng. Expand. Our Role. 2009. P. 1878-1885

79. Botez M., Bredean L., Ioani A.M. Improving the accuracy of progressive collapse risk assessment: Efficiency and contribution of supplementary progressive collapse resisting mechanisms // Comput. Struct. Elsevier Ltd, 2016. Vol. 174. P. 54-65

80. Yi W.J. et al. Experimental Study on Progressive Collapse-Resistant Behavior of Reinforced Concrete Frame Structures // ACI Struct. J. 2008. Vol. 105, № 4

81. Anil Ö., Altin S. An experimental study on reinforced concrete partially infilled frames // Eng. Struct. 2007. Vol. 29, № 3. P. 449-460

82. Shan S. et al. Experimental study on the progressive collapse performance of RC frames with infill walls // Eng. Struct. 2016

83. Zheng Y. et al. Experimental study on progressive collapse resistance of reinforced concrete frame structures // Applied Mechanics and Materials. 2011

84. Li S. et al. Experimental and numerical study on progressive collapse process of RC frames with full-height infill walls // Eng. Fail. Anal. 2016

85. Fedorova N. V., Ngoc V.T. Deformation and failure of monolithic reinforced concrete frames under special actions // J. Phys. Conf. Ser. 2019. Vol. 1425, № 1. P. 012033

86. Колчунов В.И., Прасолов Н.О., Кожаринова Л.В. Экспериментально-теоретические исследования живучести железобетонных рам при потере устойчивости отдельного элемента // Вестник МГСУ. 2011. № 3-2. С. 109-115

87. Elsanadedy H.M. et al. Assessment of progressive collapse potential of special moment resisting RC frames - Experimental and FE study // Eng. Fail. Anal. 2019

88. Yu J., Tan K.H. Structural Behavior of RC Beam-Column Subassemblages under a Middle Column Removal Scenario // J. Struct. Eng. 2013. Vol. 139, № 2. P. 233-250

89. Kang S.B., Tan K.H., Yang E.H. Progressive collapse resistance of precast beam-column sub-assemblages with engineered cementitious composites // Eng. Struct. 2015

90. Forquin P., Chen W. An experimental investigation of the progressive collapse resistance of beam-column RC sub-assemblages // Constr. Build. Mater. 2017. Vol. 152. P. 1068-1084

91. Han Q. et al. Experimental Investigation of Beam-Column Joints with Cast Steel Stiffeners for Progressive Collapse Prevention // J. Struct. Eng. 2019. Vol. 145, № 5. P. 04019020

92. Ren P. et al. Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam-slab substructures under a middle-column-removal scenario // Eng. Struct. 2016

93. Lim N.S., Tan K.H., Lee C.K. Experimental studies of 3D RC substructures under exterior and corner column removal scenarios // Eng. Struct. 2017. Vol. 150

94. Du K. et al. Experimental investigation of asymmetrical reinforced concrete spatial frame substructures against progressive collapse under different column removal scenarios // Struct. Des. Tall Spec. Build. 2020

95. Kai Q., Li B. Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column-Experimental results // Eng. Struct. 2012

96. Pantidis P., Gerasimidis S. New euler-type progressive collapse curves for steel frames // Struct. Stab. Res. Counc. Annu. Stab. Conf. 2016, SSRC 2016. Structural Stability Research Council (SSRC), 2016. P. 408-421

97. Pantidis P., Gerasimidis S. Loss-of-stability vs yielding-type collapse mode in 3D steel structures under a column removal scenario: An analytical method of assessing the collapse mode // Proc. Annu. Stab. Conf. Struct. Stab. Res. Counc. 2017. 2017

98. Fedorova N. V, Savin S.Y., Kolchunov V.I. Affecting of the Long-Term Deformation to the Stability of RC Frame-Bracing Structural Systems under Special Accidental Impacts // IOP Conf. Ser. Mater. Sci. Eng. 2020. Vol. 753. P. 032005

99. Savin S.Y., Fedorov S.S. Stability analysis of reinforced concrete building frames damaged by corrosion under static-dynamic loading // J. Phys. Conf. Ser. 2019. Vol. 1425. P. 012043

100. Hales T.A., Pantelides C.P., Reaveley L.D. Analytical buckling model for slender FRP-reinforced concrete columns // Compos. Struct. 2017

101. Bajc U. et al. Semi-analytical buckling analysis of reinforced concrete columns exposed to fire // Fire Saf. J. 2015

102. Tamrazyan A.G., Avetisyan L.A. Behavior of compressed reinforced concrete columns under thermodynamic influences taking into account increased concrete deformability // IOP Conference Series: Materials Science and Engineering. 2018

103. Геммерлинг А.В. Несущая способность стержневых стальных конструкций. Москва: Госстройиздат, 1958. 216 p

104. Вольмир А.С. Устойчивость деформируемых систем. Москва: Издательство “Наука,” 1967. 984 p

105. Marchand K., McKay A., Stevens D.J. Development and Application of Linear and Non-Linear Static Approaches in UFC 4-023-03 // Struct. Congr. 2009. 2009

106. Алмазов В.О., Као З.К. ДИНАМИКА ПРОГРЕССИРУЮЩЕГО РАЗРУШЕНИЯ МОНОЛИТНЫХ МНОГОЭТАЖНЫХ КАРКАСОВ. Москва: Издательство АСВ, 2014. 128 p

107. Geniyev G.A. Ob otsenke dinamicheskikh effektov v sterzhnevykh sistemakh iz khrupkikh materialov // Bet. i Zhelezobet. 1992. № 9. P. 25-27

108. Geniyev G.A. O dinamicheskikh effektakh v sterzhnevykh sistemakh iz fizicheski nelineynykh khrupkikh materialov // Promyshlennoye i grazhdanskoye Stroit. 1999. № 9. P. 23-24

109. Weng J., Lee C.K., Tan K.H. Simplified Dynamic Assessment for Reinforced-Concrete Structures Subject to Column Removal Scenarios // J. Struct. Eng. 2020. Vol. 146, № 12. P. 04020278

110. Savin S.Y., Kolchunov V.I., Korenkov P.A. Experimental research methodology for the deformation of RC frame under instantaneous loss of column // IOP Conf. Ser. Mater. Sci. Eng. 2020. Vol. 962. P. 022054

111. Водопьянов Р.Ю., Губченко В.Е. Применение системы «Инженерная нелинейность 2» ПК ЛИРА-САПР для расчета панельных зданий совместно с конструкциями каркаса нижних нежилых этажей // Жилищное строительство. 2019. № 3. С. 22-28

112. Fialko S.Y., Kabantsev O. V, Perelmuter A. V. Elasto-plastic progressive collapse analysis based on the integration of the equations of motion. 2021. Vol. 102, № 10214

113. Grunwald C. et al. Reliability of collapse simulation - Comparing finite and applied element method at different levels // Eng. Struct. Elsevier, 2018. Vol. 176, № January. P. 265-278

114. Marjanishvili S., Agnew E. Comparison of Various Procedures for Progressive Collapse Analysis // J. Perform. Constr. Facil. 2006. Vol. 20, № 4. P. 365-374

115. Li Y. et al. Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories // Adv. Struct. Eng. 2016. Vol. 19, № 2. P. 314-326

116. Shan L., Petrone F., Kunnath S. Robustness of RC buildings to progressive collapse: Influence of building height // Eng. Struct. Elsevier, 2019. Vol. 183, № August 2018. P. 690-701

117. Kolchunov V.I. et al. Failure simulation of a RC multi-storey building frame with prestressed girders // Mag. Civ. Eng. 2019. Vol. 92, № 8. P. 155-162

118. Tagel-Din H., Meguro K. Nonlinear simulation of RC structures using applied element method // Struct. Eng. Eng. 2000. Vol. 17, № 2. P. 137-148

119. Alanani M., Ehab M., Salem H. Progressive collapse assessment of precast prestressed reinforced concrete beams using applied element method // Case Stud. Constr. Mater. Elsevier Ltd., 2020. Vol. 13. P. e00457

120. Yu J., Luo L., Li Y. Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios // Eng. Struct. 2018. Vol. 159, № December. P. 14-27

121. Sasani M., Werner A., Kazemi A. Bar fracture modeling in progressive collapse analysis of reinforced concrete structures // Eng. Struct. Elsevier Ltd, 2011. Vol. 33, № 2. P. 401-409

122. Hwang S.J., Lee H.J. Analytical Model for Predicting Shear Strengths of Interior Reinforced Concrete Beam-Column Joints for Seismic Resistance // ACI Struct. J. 2000. Vol. 97, № 1. P. 35-44

123. Tsonos A.G. Effectiveness of CFRP-jackets and RC-jackets in post-earthquake and pre-earthquake retrofitting of beam-column subassemblages // Eng. Struct. 2008. Vol. 30, № 3. P. 777-793

124. Hayati N., Hamid A. Seismic Performance of Interior Beam-Column Joint With Fuse-Bar Designed Using Ec8 Under In-Plane Lateral Cyclic Loading // International Conference on Disaster Management and Civil Engineering (ICDMCE’15) Oct. 1-3, 2015 Phuket (Thailand). Universal Researchers, 2015. № July

125. Feng D.-C., Wu G., Lu Y. Numerical Investigation on the Progressive Collapse Behavior of Precast Reinforced Concrete Frame Subassemblages // J. Perform. Constr. Facil. 2018. Vol. 32, № 3. P. 04018027

126. Ahmadi R. et al. Experimental and Numerical Evaluation of Progressive Collapse Behavior in Scaled RC Beam-Column Subassemblage // Shock Vib. 2016. Vol. 2016. P. 1-17

127. Feng D.-C. et al. Investigation of Modeling Strategies for Progressive Collapse Analysis of RC Frame Structures // J. Perform. Constr. Facil. 2019. Vol. 33, № 6. P. 04019063

128. Федорова Н.В, Ву Н.Т., Яковенко И.А. Критерий прочности плосконапряженного железобетонного элемента при особом воздействии // Вестник МГСУ. 2020. № 11. С. 1513-1522

129. Mazzarolo E. et al. Long anchorage bond-slip formulation for modeling of r.c. elements and joints // Eng. Struct. Elsevier Ltd, 2012. Vol. 34. P. 330-341

130. Park R. A summary of results of simulated seismic load tests on reinforced concrete beam-column joints, beams and columns with substandard reinforcing details // J. Earthq. Eng. 2002. Vol. 6, № 2. P. 147-174

131. Jacques E., Saatcioglu M. High strain rate bond characteristics of reinforced concrete beam-ends // Int. J. Impact Eng. Elsevier, 2019. Vol. 130, № September 2018. P. 192-202

132. Long X. et al. Bond strength of steel reinforcement under different loading rates // Constr. Build. Mater. Elsevier Ltd, 2020. Vol. 238. P. 117749

133. Mohd Noh H., Sonoda Y. Potential effects of corrosion damage on the performance of reinforced concrete member // MATEC Web Conf. 2016. Vol. 47. P. 0-6

134. Zhang Z. et al. The Sustainability performance of reinforced concrete structures in tunnel lining induced by long-term coastal environment // Sustain. 2020. Vol. 12, № 10

135. Tran X.H., Kai Y. Modeling of interior reinforced concrete beam-column joint based on an innovative theory of joint shear failure // Japan Archit. Rev. 2019. Vol. 2, № 3. P. 287-301

136. Abdelwahed B. Beam-column joints reinforcement detailing adequacy in case of a corner column loss-numerical analysis // Lat. Am. J. Solids Struct. 2019. Vol. 16, № 7. P. 1-13

137. Iakovenko I., Kolchunov V., Lymar I. Rigidity of reinforced concrete structures in the presence of different cracks // MATEC Web Conf. 2017. Vol. 116

138. Niki V., Erkmen R.E. Shear deformable hybrid finite element formulation for buckling analysis of composite columns // Can. J. Civ. Eng. 2018. Vol. 45, № 4. P. 279-288

139. Simão P.D. Influence of shear deformations on the buckling of columns using the Generalized Beam Theory and energy principles // Eur. J. Mech. A/Solids. 2017. Vol. 61. P. 216-234

140. Zhang H., Kang Y.A., Li X.F. Stability and vibration analysis of axially-loaded shear beam-columns carrying elastically restrained mass // Appl. Math. Model. 2013. Vol. 37, № 16-17. P. 8237-8250

141. Рочев А.А. Пространственный расчет неупругих составных стержней // Строительная механика инженерных конструкций и сооружений. 2012. № 1. С. 17-23

142. Qiao H., Yang Y., Zhang J. Progressive Collapse Analysis of Multistory Moment Frames with Varying Mechanisms // J. Perform. Constr. Facil. Elsevier, 2018. Vol. 32, № 4. P. 04018043

143. Almusallam T. et al. Development limitations of compressive arch and catenary actions in reinforced concrete special moment resisting frames under column-loss scenarios // Struct. Infrastruct. Eng. Taylor & Francis, 2020. Vol. 16, № 12. P. 1616-1634

144. Weng J., Tan K.H., Lee C.K. Adaptive superelement modeling for progressive collapse analysis of reinforced concrete frames // Eng. Struct. 2017. Vol. 151. P. 136-152

145. Tsai M.-H. An Approximate Analytical Formulation for the Rise-Time Effect on Dynamic Structural Response Under Column Loss // Int. J. Struct. Stab. Dyn. 2018. Vol. 18, № 03. P. 1850038

146. Amiri S., Saffari H., Mashhadi J. Assessment of dynamic increase factor for progressive collapse analysis of RC structures // Eng. Fail. Anal. 2018. Vol. 84. P. 300-310

147. Александров А.В., Травуш В.И., Матвеев А.В. О расчете стержневых конструкций на устойчивость // Промышленное и гражданское строительство. 2002. № 3. С. 16-19

148. Трекин Н.Н., Кодыш Э.Н. Особое предельное состояние железобетонных конструкций и его нормирование // Промышленное и гражданское строительство. 2020. № 5. С. 4-9


Рецензия

Для цитирования:


Федорова Н.В., Савин С.Ю. АНАЛИЗ ОСОБЕННОСТЕЙ СОПРОТИВЛЕНИЯ ПРОГРЕССИРУЮЩЕМУ ОБРУШЕНИЮ КОНСТРУКТИВНЫХ СИСТЕМ ЗДАНИЙ И СООРУЖЕНИЙ ПРИ ВНЕЗАПНЫХ СТРУКТУРНЫХ ПЕРЕСТРОЙКАХ: АНАЛИТИЧЕСКИЙ ОБЗОР НАУЧНЫХ ИССЛЕДОВАНИЙ. Строительство и реконструкция. 2021;(3):76-108. https://doi.org/10.33979/2073-7416-2021-95-3-76-108

For citation:


Fedorova N.V., Savin S.Yu. PROGRESSIVE COLLAPSE RESISTANCE OF FACILITIES EXPERIENCED TO LOCALIZED STRUCTURAL DAMAGE - AN ANALYTICAL REVIEW. Building and Reconstruction. 2021;(3):76-108. (In Russ.) https://doi.org/10.33979/2073-7416-2021-95-3-76-108

Просмотров: 562


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)