Preview

Building and Reconstruction

Advanced search

PARAMETERs of fracTure mechanics of basalt-fiberED high-strength concrete

Abstract

Currently, basalt fibers are used in construction as a dispersed reinforcement of concrete and reinforced concrete structures in high-rise buildings, bridges, airport runways and highway pavements. Mass production of high-strength concrete in Russia is largely associated with the use of organomineral modifiers of the MB and Embelit series containing microsilica, fly ash, curing regulator and superplasticizer C-3 in different proportions. The research of features of high-strength concrete (with 1% of basal fiber and without basalt fiber), manufactured with the use of modifier MB10-30C, was made on samples with detentions 100x100x100 mm, 100x100x400 mm, 100x100x400 mm with the artificial crack of 25 mm deep in the middle of the span, and also 100х75х400 mm (75 mm height was taken equal to the height of the section above the crack of the 2nd type of prisms). The compressive strength, the tensile strength at bending, the strength at axial tension, the cracking moment, and also the characteristics of fracture mechanics, such as: the critical stress intensity factor and the critical energy release rate, in various periods of curing (7, 14, 28 and 60 days of curing) were determined under the research. Influence of cracks in the bending element on the value of the cracking moment was also determined under the research. The research results show that the use of basalt fibers in MB10-30C modifier based high-strength concrete resulted in a decrease in the compressive strength, but at the same time, enhance the tensile strength

About the Authors

K. Makhmud
Peoples' Friendship University of Russia (RUDN University)
Russian Federation


D. D. Koroteev
Peoples' Friendship University of Russia (RUDN University)
Russian Federation


J. Marko
Peoples' Friendship University of Russia (RUDN University)
Russian Federation


E. A. Volkov
Peoples' Friendship University of Russia (RUDN University)
Russian Federation


References

1. Оснос С.П., Краюшкина Е.В., Химерик Т.Ю. Армирующие и композитные материалы на основе БНВ в дорожном строительстве // Композитный мир. 2017. №5. С. 52-64.

2. Sadrmomtazi A., Tahmouresi B., Saradar A. Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC) // Construction and Building Materials. 2018. No 162. Pp. 321-333.

3. Dong J.F., Wang Q.Y., Guan Z.W. Material properties of basalt fibre reinforced concrete made with recycled earthquake waste // Construction and Building Materials. 2017. No 130. Pp. 241-251.

4. Borhan T.M. Properties of glass concrete reinforced with short basalt fibre // Materials & Design. 2012. No 42. Pp. 265-271.

5. Перфилов В.А., Зубова М.О. (2015). Влияние базальтовых волокон на прочность мелкозернистых фибробетонов // Интернет-вестник ВолгГАСУ. Сер.: Политематическая. 2015. №1(37). С. 1-4.

6. Баранов А.С. Прочность прессованного пластифицированного фибробетона // Технические науки - от теории к практике. 2014. №34. С. 1-8.

7. High C., Seliem H.M., El-Safty A., Rizkalla S.H. Use of basalt fibers for concrete structures // Construction and Building Materials. 2015. Vol. 96. Pp. 37-46.

8. Ayub T., Shafiq N., Nuruddin M.F. Mechanical Properties of High-performance Concrete Reinforced with Basalt Fibers // Procedia Engineering. 2014. Vol. 77. Pp. 131-139.

9. Branston J., Das S., Kenno S.Y., Taylor C. Influence of basalt fibres on free and restrained plastic shrinkage // Cement and Concrete Composites. 2016. Vol. 74. Pp. 182-190.

10. Kizilkanat A.B., Kabay N., Akyüncü V., Chowdhury S., Akça A.H. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study // Construction and Building Materials. 2015. Vol. 100. Pp. 218-224.

11. Каприелов С.С., Шейнфельд А.В., Аль-Омаис Д., Зайцев А.С. Высокопрочные бетоны в конструкции фундаментов высотного комплекса "ОКО" в ММДЦ "Москва-Сити" // Промышленное и гражданское строительство. 2017. №3. С. 53-57.

12. Karpenko N.I., Mishina A.V., Travush V.I. Impact of Growth on Physical, Mechanical and Rheological Properties of High Strength Steel Fiber Reinforced Concrete // Procedia Engineering. 2015. Vol. 111. Pp. 390-397.

13. ГОСТ 10180-2012. Бетоны. Методы определения прочности по контрольным образцам, Москва, 2013.

14. СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения, Москва, 2015.

15. ГОСТ 24452-80. Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона, Москва, 2005.

16. Клюев С.В. Экспериментальные исследования фибробетонных конструкций // Строительная механика инженерных конструкций и сооружений. 2011. № 4. C. 71-75.


Review

For citations:


Makhmud K., Koroteev D.D., Marko J., Volkov E.A. PARAMETERs of fracTure mechanics of basalt-fiberED high-strength concrete. Building and Reconstruction. 2018;(5):112-123. (In Russ.)

Views: 115


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)