Preview

Building and Reconstruction

Advanced search

COMBINED ACTION OF MASONRY ARCHES AND WALLS

Abstract

The paper analyzes the combined action of stone arches and walls, which exert a unloading effect on the arches. The finite-element model of the Wallen-Delamot arch was designed for the effect of the load of the overlying masonry. The load action was taken into account both from a combined finite element model with a rigid connection of the arch and overlying masonry, and from the gravitational load transferred to the arch. The dependences of the maximum acting stresses in the arch on the modulus of elasticity of the overlying masonry are constructed, reflecting the behavior of the damaged masonry, which lost rigidity properties. It is shown that when the modulus of elasticity decreases to 5-10% of the initial one, significant changes occur in the stress-strain state of the entire structure. The obtained results demonstrate that when the arch is loaded with a gravitational load and there are no restrictions on the overlying laying of vertical and horizontal displacements, the stressed state of the arch differs significantly from its state when modeling the entire structure.

About the Authors

R. B. Orlowicz
West Pomeranian University of Technology Szczecin
Russian Federation


V. V. Bespalov
Peter the Great St. Petersburg Polytechnic University
Russian Federation


M. D. Semenova
Peter the Great St. Petersburg Polytechnic University
Russian Federation


References

1. Бернгард В.Р. Арки и своды. Руководство к устройству и расчету арочных и сводчатых перекрытий. Санкт-Петербург, 1901. 128 с.

2. Ahnert R., Krause K. H.: Typische Baukonstruktionen von 1860 bis 1960 zur Beurteilung der vorhandenen Bausubstanz, Band 1,2. Berlin, 2009. 341 p.

3. Физдель И.А. Дефекты в конструкциях, сооружениях и методы их устранения. Москва, 1987. 177 с.

4. Ucer D., Ulybin A., Zubkov S., Elias-Ozkan S.T. Analysis on the mechanical properties of historical brick masonry after machinery demolition. Construction and Building Materials. 2018. No. 161. Pp. 186-195.

5. Орлович Р.Б., Новак Р., Деркач В.Н. Несущая способность каменных перемычек // Промышленное и гражданское строительство. 2017. №7. С. 52-57.

6. Ricci E., Sacco E., Piccioni M. A method for the analysis of masonry arches. Proceedings of 10th International Conference on Structural Analysis of Historical Constructions SAHC. Leuven, Belgio. 2016. Pp. 112-118.

7. Di Re P., Addessi D. Sacco E. A multiscale force-based curved beam element for masonry arches. Computers & Structures. 2018. No. 204. Pp. 32-37.

8. Hrynyk T., Myers J. J. Comparative study on the out-of-plane behavior of retrofitted masonry wall systems with arching action. 10th North American Masonry Conference. 2007. Pp. 305-316.

9. Baraldi D., Cecchi A. Discrete Model for the Collapse Behavior of Unreinforced Random Masonry Walls. Key Engineering Materials. 2017. No. 747. Pp. 3-10.

10. Liberatore D., Addessi D. Strength domains and return algorithm for the lumped plasticity equivalent frame model of masonry structures. Engineering Structures. 2015. No. 91. Pp. 167-181.

11. Della Vecchia G., De Bellis M.L., Pandolfi A. A Multiscale Microstructural Model of Damage and Permeability in Fractured Solids. Procedia Engineering. 2016. No. 158. Pp. 21-26.

12. Sabal M., Meloni D. Comparison of seismic models for a historic masonry building. Revista UIS Ingenierías. 2018. Vol. 17. No. 2. Pp. 105-114.

13. Van Parys L., Noël J., D. Lamblin, Bultot E., Delehouzee L.: Fe “Block & Interaction” Approach for Computing the Impact of Tower Inclinations on the Safety of a Masonry Arch System in the Our Lady Cathedral of Tournai (BE). Structural Analysis of Historical Constructions. Proceedings of the international conference. Wroclaw, 2012. Pp. 550-559.

14. Bovo M., Mazzotti C., Savoia M. Structural behaviour of historical stone arches andvaults: Experimental tests and numerical analyses. Engineering Materials. 2014. No. 628. Pp. 43-48.

15. Raffa M.L., Lebon F., Vairo G. Normal and tangential stiffnesses of rough surfaces in contact via an imperfect interface model. International Journal of Solids and Structures. 2016. Vol. 87. Pp. 245-253.

16. Raffa, M.L., Lebon F., Rizzoni R. Derivation of a model of imperfect interface with finite strains and damage by asymptotic techniques: an application to masonry structures. Meccanica. 2018. No. 53. Pp. 1645-1660.


Review

For citations:


Orlowicz R.B., Bespalov V.V., Semenova M.D. COMBINED ACTION OF MASONRY ARCHES AND WALLS. Building and Reconstruction. 2018;(5):32-39. (In Russ.)

Views: 92


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)