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ПРАКТИЧЕСКИЙ МЕТОД РАСЧЕТА  
ПО НОРМАЛЬНОМУ СЕЧЕНИЮ КОРРОЗИОННО  

ПОВРЕЖДЕННЫХ КОЛОНН ПРИ ГОРИЗОНТАЛЬНОМ УДАРЕ 
 

Аннотация. Вопросы живучести несущих конструкций при техногенных аварийных 
воздействиях в настоящее время приобретают все большую актуальность как в отечественной, 
так и в мировой строительной науке. В особенности это касается сжатых и сжато изгибаемых 
элементов, в том числе колонн зданий.  Здания со значительным периодом эксплуатации 
накапливают коррозионные повреждения, которые приводят к местной деградации 
механических характеристик материалов, что может существенно сказаться на предельной 
несущей способности и живучести конструктивных систем в целом при динамических 
воздействиях. Разрабатывается подход к определению прочности нормальных сечений для 
внецентренно сжатых колонн в случае малого начального эксцентриситета при поперечном 
ударе. Коррозия рассматривается в виде «точечного» очага, в пределах которого могут быть 
деградированы механические характеристики как бетона, так и арматуры. Степень деградации 
механических характеристик материалов определяется по экспериментальным данным, 
получаемым на основе схем ускоренной коррозии. В зависимости от ее степени учитывается 
влияние стеснения деформаций бетона в направлении, перпендикулярном сжатию. Приводится 
верификационное сравнение разработанной методики с экспериментальными данными 
динамических испытаний колонн при поперечном ударе. Рассмотрен пример расчета 
коррозионно-поврежденной колонны. 

 
Ключевые слова: поперечный удар, коррозионные повреждения, железобетонные 

конструкции, колонна, динамические воздействия, механическая безопасность. 

 
A.V. ALEKSEYTSEV1, K.V. YURUSOV1 

1 National Research Moscow State University of Civil Engineering, Moscow, Russia 

 

A PRACTICAL CALCULATION METHOD FOR  
THE NORMAL SECTION OF CORROSION-DAMAGED COLUMNS 

UNDER TRANSVERSE IMPACT 
 

Abstract. The issues of the robustness of load-bearing structures under technogenic emergency 
impacts are currently becoming increasingly relevant in both domestic and global structural engineering. 
This is particularly true for compressed and compression-bent elements, including building columns. 
Buildings with a significant service life accumulate corrosion damage, which leads to local degradation 
of the mechanical properties of materials. This can substantially affect the ultimate load-bearing capacity 
and overall robustness of structural systems under dynamic loads. An approach is being developed to 
determine the strength of normal sections for eccentrically compressed columns with a small initial 
eccentricity under transverse impact. Corrosion is considered as a localized "spot" defect, within which 
the mechanical properties of both concrete and reinforcement may be degraded. The degree of 
degradation of the materials' mechanical properties is determined from experimental data obtained using 
accelerated corrosion schemes. Depending on the degree of corrosion, the effect of confinement on 
concrete deformations in the direction perpendicular to compression is taken into account. A verification 
comparison of the developed methodology with experimental data from dynamic tests of columns under 
transverse impact is provided. A calculation example for a corrosion-damaged column is considered. 
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1. Введение 

Задача обеспечения безопасности зданий и сооружений, подверженных коррозии, 

является актуальной в современных социально-экономических условиях. Значительная часть 

основных фондов капитального строительства имеет технический износ, часто включающий 

коррозионные повреждения балок и колонн. В связи с этим разрабатываются концепции и 

совершенствуются методики расчета таких железобетонных элементов [1-5]. При этом 

наиболее сложным и востребованным является описание комбинированных воздействий, 

например, сочетаний коррозии и пожара или коррозии и ударного воздействия [6, 7]. 

Одним из наиболее неизученных вопросов является комбинированное воздействие, 

включающее в себя механический поперечный удар по колонне в случае ее коррозионного 

повреждения. Процесс деформирования нагруженных колонн при поперечном ударе 

достаточно давно изучается как зарубежными, так и отечественными учеными [8-10]. Модели 

коррозионных повреждений как бетона, так и арматуры разрабатываются и совершенствуются 

во многих работах при этом используются различные схемы учета коррозии и удара, как 

правило на основе численного моделирования и экспериментально [11-17]. При этом 

уделяется внимание таким аспектам как начальные повреждения, трещиностойкость, потеря 

сцепления арматуры и бетона, возникающие динамические эффекты [18-25]. При описании 

этих процессов деформирования используются модели теории надежности, методы учета 

нелинейного поведения конструкций, случайный характер появления и распространения 

коррозии на основе вероятностных методов, а также неоднородные модели сцепления 

арматуры и бетона [26-30]. В большинстве исследований модели деформаций представляют 

собой объемные конечно-элементные схемы, нуждающиеся в очень тонкой настройке и 

исследовании параметров при уже известном результате. Поэтому возникает необходимость в 

упрощенном инженерном методе, позволяющем проводить вычислительно быструю оценку 

напряженно деформированного состояния конструкций как проектируемых с учетом прогноза 

по развитию коррозии, так и уже получивших коррозионные повреждения по результатам 

технического обследования. В такой модели упрощенно должна учитываться динамика 

конструкции и различные варианты коррозионных повреждений как бетона, так и арматуры.    

 

2. Модели и методы 

1. Постановка задачи. Рассматривается в общем случае внецентренно сжатая с 

малым эксцентриситетом колонна, имеющая коррозионные повреждения бетона и арматуры. 

Считается, что расположение и состояние очага коррозионных повреждений при действии 

поперечной аварийной ударной нагрузки не приводит к инициации разрушения колонны по 

наклонному сечению. Требуется определить максимальную интенсивность ударной нагрузки 

при действующем напряженно-деформированном состоянии колонны под 

эксплуатационными нагрузками. Граничное неравенство предельных состояний первой 

группы для рассматриваемого нами случая можно записать в виде: 

( ( ), ( )) ( ( ), ( ))v h ultФ F t F t Ф N t M t , (1) 

где Ф(), ()ultФ  – функции нагрузочного эффекта и предельной несущей способности колонны, 

( ), ( )v hF t F t  – функции изменения во времени вертикальных и горизонтальных нагрузок, 

действующих на колонну; ( ), ( )N t M t – функции изменения во времени внутренних усилий, 

которые может воспринять сечение.  

В рамках инженерной методики расчета мы будем оперировать пиковыми значениями 

динамических нагрузок, которые могут быть определены на основе квазистатического 

подхода, когда статическое значение фактора, умножается на коэффициент динамики, 
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полученный ранее на основе развернутого динамического расчета. В этом случае уравнение 

(1) принимает вид: 

1 max ,

2 max ,

d сd ult

d сd ult

k N N

k M M

 




, 

(2) 

 где 1dk , 2dk  – коэффициенты, определяемые произведением величин коэффициентов 

динамичности и динамического догружения; в случае, если при ударе в системе не 

разрушаются опорные связи, полагаем коэффициент динамического догружения равным 

единице, тогда    ( )1 2 2d dk k  ; maxN , maxM  – максимальные внутренние усилия от 

статических эквивалентов нагрузки в колонне при действии эксплуатационной и пиковой 

ударной нагрузок, ,сd ultN , ,сd ultM  – предельные усилия, определяемые с учетом расчетных 

сопротивлений бетона и арматуры при их динамическом упрочнении, а также коррозионных 

повреждениях в случае расположения опасного сечения в очаге коррозии. 

2. Упрощенный учет деградации материалов. Для определения жёсткостей сечений 

коррозионно-поврежденных элементов запишем следующие зависимости: 

𝐼𝑟𝑒𝑑
𝑐𝑜𝑟 = 𝐼𝑏 + 𝐼𝑠

𝑙𝑏 , 2
,

1

,
n

cor cor
s i s i i

i

I A y
=
= / ,cor cor

i si bE E =
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0
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bj bj bd b

jcor
b

E A E A

E
bh

=


 
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 = →  
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1
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cor

n
cor cor corsi
red b s i im

cori
bj bj bd b
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E
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E A E A=

=





 
 

= +  
 +
 

 

 

 

 

 

(3) 

где  cor
redI  приведенный к бетону главный момент инерции с учетом возможности коррозии m  

слоев бетона и n  арматурных стержней,  bI  – момент инерции неповрежденного бетона, cor
siE

– модуль упругости корродированной арматурной стали для стержня i , определяемый по 

методике [16], в частности по графику рис. 1, а; если коррозии стержня нет, то 
cor
si sE E= ;

cor
bjE

– модуль упругости слоя j  корродированного бетона, определяемый в соответствии с 

моделью коррозии, в частности можно использовать модели, изложенные в  [4, 13, 25]; 0, ,b h y  

– соответственно ширина сечения, рабочая высота сечения, расстояние от оси, проходящей 

через центр тяжести стержня до оси центральной оси сечения, ,
cor
s iA – площадь арматурного 

стержня с учетом коррозионного износа, определяемая, например, по [14] или упрощенно: при 

износе в 10% – , ,0,9cor
s i s iA A=  , в случае отсутствия коррозии 

cor
s sA A= ; ,bj bA A  площади частей 

сечения, поврежденные и неповрежденные коррозией,  bdE  – модуль упругости 

неповрежденного бетона с учетом его деформаций от эксплуатационных нагрузок,

0,85bd bE E . 

Снижение под воздействием коррозии расчетных сопротивлений бетона bR  и стали sR  

определяется на основе зависимостей 

cor s
s red sR k R= ,

cor b
b red bR k R=  (4) 
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где коэффициент редукции b
redk  зависит от степени стеснения поперечных деформаций или 

«ограниченности» бетона и может быть определен по графику (рис. 2, а-в); коэффициент 

редукции s
redk  определяется процентом износа арматурного сечения и может быть определен 

по графику (рис. 2, г). Графики коэффициентов редукции в формулах (4) получены на основе 

данных экспериментальных испытаний [17]. Под степенью bС  стеснения поперечных 

деформаций будем понимать отношение диаметра поперечной swd  арматуры колонны к ее 

шагу wS .  

  
 

а) б) в) 

Рисунок 1 – К учету деградации материалов: общая расчетная схема с расположением очага 

коррозии: S – опасное сечение, А, B – сечения с кинематическими ограничениями, Ft – статический 

эквивалент механической ударной нагрузки (а); параметрическая схема коррозии бетона и арматуры (б); 

функция снижения модуля упругости арматуры в зависимости от степени коррозии (в) 

 

2. Методика расчета. Суть методики расчета состоит в построении области прочности 

колонны в координатах «горизонтальная сила»-«продольное усилие» как показано на рис. 3. 

Эта область находится под кривой несущей способности, пересекающей оси координат. 

  
а) б) 
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в) г) 

Рисунок 2 – Коэффициенты редукции при коррозии бетона и арматуры 

 
Рисунок 3 – Кривые несущей способности (общий вид) при различных условиях опирания 

 и коррозионном повреждении 

Построение кривой несущей способности сводится к нахождению точек А, Вi, С (см. рис. 

3). Далее, для заданной эксплуатационной нагрузки следует лишь только проверить попадает 

ли значение горизонтальной силы в область прочности. Следует отметить, что построение 

области прочности следует выполнять всякий раз при изменении кинематических 

ограничений, эксплуатационных нагрузок и расположения горизонтальной аварийной 

нагрузки. Величина Nmin на рис. 3 соответствует минимальной продольной силе в колонне, 

которая может наблюдаться, например, в период монтажа каркаса здания. Рассмотрим процесс 

построения кривой несущей способности.  

Точка А. Здесь определяется максимальная продольная сила в зависимости от 

гибкости   колонн. Предельное состояние характеризуется устойчивостью и прочностью по 

материалу с учетом продольного изгиба: 
2 2

0

1

/ , 50;

( ) ,
, 50

cor cor
b red

mА cor cor cor
b bj b b s s s s sc sc

j nc

E I l

N
R A R A R A R A R A

 


 

=
 

 


=   
+ + + +   

 

0,tF =  

 

(5) 

где 0l  – расчетная длина колонны, , , ,sc sc s sR A R A  – расчётные сопротивления и площади 

арматуры при сжатии и растяжении соответственно,  -коэффициент продольного изгиба  

(СП 63.13330), nc – число стержней, подверженных коррозии.  
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Точка С. Допускаем, что влияние минимальной продольной силы на изгиб 

незначительно. Возможно 2 случая: первый – сечение, в котором возникают максимальные 

усилия при действии горизонтальной нагрузки попадает в очаг коррозии, второй – не 

попадает. В соответствии с этим и с учетом (2) можно записать систему условий прочности:     

( ) ( )2 max , 2 ,

2 max ,

;
,

d d ult d sp cd ult

d сd ult

k M M k M M

k M M

   




 

 

(6) 

где  maxM  – максимальный изгибающий момент в сечении, находящемся вне 

коррозионных повреждений, ,d ultM  – предельный момент, воспринимаемый сечением без 

коррозионных повреждений с учетом динамического упрочнения материалов, ,cd ultM  – то же, 

но с коррозионными повреждениями, spM  – момент в сечении, где есть коррозионные 

повреждения.   

Предельный момент ,cd ultM  можно рассчитать из условия равновесия усилий в сечении 

относительно центра тяжести растягиваемой ударом арматуры в зависимости от 

расположения горизонтальной силы. Если воздействие приложено к неповрежденному бетону 

(рис. 4, а), то уравнение для момента принимает вид: 

 

( )2
, 1 0 2 0

cor
cd ult b cor R sc sМ k R b h k R A h a =    +   − , (7) 

 

в противном случае (рис. 4, б) 

 

( )2
, 0, 0,

cor cor cor cor
cd ult b cor cor R sc sc corМ R b h R A h a=    +   − , 

(8) 

 

где 1k , 2k  коэффициенты динамического упрочнения материалов, 0, 00,9corh h=  а величина   

2

0.9
1 ,  

2 1 / ( )

cor
cor cor corR
R R R cor cor

s s bR E


  



 
=  − = 

+ 
. 

 

(9) 

Формула для cor
R  приводится в [1], остальные величины показаны на рис. 4, б. 

Величина maxM  должна, кроме вклада горизонтальной силы, учитывать моменты в составе 

рамной системы и моменты от случайных эксцентриситетов. В качестве примера для сечений 

1, 2, 3 на рис. 4, в можно записать    
 

 max 1 2 3 1 2

3

max , , ; ( ) ; ( )

; ( ) .

f t f t

f t

М M M M M M M F Me M M M F

Me M M M F Me

= = + + = − +

+ = − + +
 

 

(10) 

Формулы для изгибающих моментов от горизонтальной нагрузки можно найти по 

таблицам эпюр или непосредственным расчетом в зависимости от конкретных закреплений 

колонны. Далее, подставляя (7)-(9) в (6), определяется значение tF . 
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а) б) в) 

  
 

г) д) е) 

 

Рисунок 4 – К вычислению максимальной горизонтальной силы: расположение ударного 

воздействия (а), (б); схема рамы для примера определения величины maxМ (в), случаи перераспределения 

напряжений сжатия с ростом или уменьшением сжатой зоны бетона (г)-(е) 
 

Точки 1 nB B− . Очевидно, что данная область будет содержать значения 

горизонтальной силы, которые инициируют переход от пластического разрушения к 

хрупкому. При этом первоначально при наличии коррозии арматуры по формуле (9) 

вычисляется граничное значение относительной высоты сжатой зоны бетона. Для каждой 

точки iB  задается значение продольной силы iN  из интервала ( )min;АN N  на рис. 3. Число n 

здесь определяет точность последующего прогноза по величине горизонтальной силы. Далее 

в цикле по числу точек iB  решается уравнение равновесия с учетом наличия продольной силы 

из которого находится значение горизонтальной силы. Для его решения выполняем ряд 

этапов: 

1. Вычисляется высота сжатой зоны бетона и ее относительная величина.  

2 2
0,  ( ) 2 ( / ) ( ).

cor
cor corred

m m s s s s s s s s scor
red

I N
x x x a h

A M
           = + = + + + − +  

, 0 0

0,0015
, , ,

cor
s s s

s s s

b ser

E A A

R bh bh
  


= = = .f eМ M M= + 1 ,

1

;
n

cor si
red b s i

i bd

E
A bh A A

E=
= − +  

 

 

(11) 

 

В формулах (11) в случае дальнейших вычислений по формуле (13) принимается 

0 0
corh h= ,

cor
s sA A = ,  для условия (14) – 

cor
s sA A= .  

Проверяется условие  0 0/cor cor cor cor
R x h  = , если оно удовлетворено, то в расчетах для 

следующих значений iN  продолжает использоваться формула (11), если  0
cor cor
R  , то для 

mx  используется выражение 
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 cor
m cor

b cor

N
x

R b
= , 0

cor cor
mx h . (12) 

Уравнение равновесия внешних и внутренних сил в случае сжатия поврежденной части 

имеет вид:   

max 1 0 1 0( 0,5 ) ( )cor cor cor cor cor cor cor
f b cor sc scМ Ne R b x h x R A h a +  − + −

 
, 1

cor cor cor
Rx x x= − , (13) 

в противном случае 

( )2
max 1 0 2 0

cor
f b cor R sc sМ Ne k R b h k R A h a + =    +   − . (14) 

Здесь значение эксцентриситета продольной силы определяем так:  

𝑒𝑓 =
1

1 − 𝑁/𝑁А|𝜆>50
(𝑓 +

ℎ0,𝑐𝑜𝑟 − а

2
). (15) 

Учет величины  corx  осуществляется по рис 4. В случае отрицательного приращения 

(разгрузки сечения) в запас прочности можно принимать 𝑥𝑐𝑜𝑟 = 0, тогда 𝑥1
𝑐𝑜𝑟 = 𝑥𝑅

𝑐𝑜𝑟, в случае 

догружения сечения (рис. 4, е) 𝑥𝑐𝑜𝑟 ≠ 0 , это случай больших эксцентриситетов, не 

рассматриваемый в данной статье. 

Прогиб f от действия горизонтальной силы можно определить через кривизну, зная 

жесткость в сечении элемента. Эту жесткость с учетом коррозии можно определить как   

,cor
corr red redD E I=

, 1,/ cor cor cor
b ser b red cor s s s s

red cor cor
cor s s

R x b E A E A
E

x b A A

 + +
=

+ +
. (16) 

Тогда прогиб колонны при разбиении ее на n участков одинаковой длины l : 

1 21 2

1 2
1 1 1 2 10 0 01 2

1 i il lln n n

i i i
i i ii i corr i

M M
f M dz M dz M dz

r D D

 

= = =
    

    
= = +     

     
. (17) 

где D  – жесткость элемента без коррозионных повреждений, 1n  число участков без 

коррозионных повреждений, 𝑛2– число участков, определяющих длину очага коррозии 1d  

(рис. 1, б). 

Для перехода от динамической нагрузки с заданной формой импульса, например, 

показанной на рис. 5., к значению механической силы можно использовать формулу 

/tP F t=   , (18) 

где tF  – площадь фигуры импульса, t – время динамического воздействия. 

  

а) б) 
Рисунок 5 – Возможные формы импульса для динамической нагрузки 
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3. Результаты исследования и их анализ 

Для верификации предложенного метода используем экспериментальные данные 

динамических испытаний из работы [10], где сжатый железобетонный образец подвергался 

динамической нагрузке. Коррозионных воздействий не было поэтому в проверочном расчете 

деградацию механических характеристик бетона и арматуры не учитываем. Расчетная схема 

образца приведена на рис. 6, а. Имеются данные о геометрии и сопротивлениях по двум 

испытаниям одинаковых образцов, приведенные в таблице 1. Армирование рабочей 

арматурой выполнено из 4 стержней диаметра 18 мм, периодического профиля 

расположенных симметрично в углах прямоугольного сечения.  

Запишем уравнение равновесия (14) применительно к данной экпериментальной задаче 

( )2
max 1 0 2 0f b R sc sМ Ne k R b h k R A h a  + =    +   − . По результатам экспериментальных 

испытаний, приводимых различными авторами, в т.ч. принимая во внимание работу [2] можно 

назначить 1k =1,15, 2k =1,2, вычислим с учетом отсутствия коррозии по (9) величины 

50,8 / (1 (442 / 2 10 ) / 0,0035) 0,49R = +  = , 0,49(1 0,49 / 2) 0,37R = − = .  

Таблица 1 – Экспериментальные данные динамических испытаний [10] 

Марка h b  
0h  0h a−  bR  s scA A=  sR  Nэксп P эксп 

 см МПа см2 МПа кH 

К-18-Д3 23,7х15,5 22 19 
29,8 5,09 442 

480 420 

18-Д3 23,5х15,5 20,5 18 480 394 

  

  

а) б) 
Рисунок 6 – К верификации методики расчета: расчетная схема в эксперименте (а), 

 результат испытания (б) 

 

Изгибающий момент составит / 6 0, 23t tF l F= (Н). Полный эксцентриситет определяем 

по (15). Для этого определим приведенные к бетону характеристики сечения 

( )
2323,6 15,5 /12 6,66 2 5,09 18,5 / 2 22779redI =  +    = см4.

2 7 8 23 10 22779 10 /1,38AN  −=    = 35379 

кН. Прогиб от действия динамической силы 
3 3/ 48 1,38 / 48 26333t red red tf F l E I F= =      

222779 10−  =
79,162 104tF −  см. ( )71/ (1 480 / 35379) 9,1624 10 18,5 / 2 9,376tfe F −= −   + = +  

60,9288 10tF −+   см. Подставляя все значения в уравнение (14), имеем 23,445 tF

(кН)=10946+7468, 670,24tF = , /1,5 670,24 /1,5 446,6tP F= = = кН.  

Здесь, для перехода к статическому эквиваленту и сравнения с экспериментальным 

значением в таблице 1 был использован коэффициент 2 1,5dk =  (см. (2)). Результат 

удовлетворительно (с отклонением около 10%) соответствует среднему экспериментальному 

значению 407 кН. Снижение нагрузки связано с неопределенностью коэффициента динамики 

в данном примере. При уточнении условий, связанных с начальной скоростью удара и 

фактическими для данного бетона и арматуры коэффициентами динамического упрочнения, 

соответствие может быть еще лучше. 
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Пример расчета колонны с коррозионными повреждениями. Рассмотрим 

железобетонную колонну высотой 4,5 м, сечением 400х400 мм, расстояние а=5 см (рис. 7 а, 

б). Колонна симметрично армируется стержнями продольной арматуры 4d28 A500C, 
28 6,158scA = см2, 𝑅𝑠𝑐 = 435МПа. Поперечная арматура d12 А240 расположена в приопорных 

участках с шагом 100 мм, далее с шагом 300 мм. Колонна изготовлена из бетона B20, 

11,5bR МПа= , 27500bE МПа= .  

В результате оценки технического состояния установлено, что степень коррозии 

арматуры 20% , коррозии подвержены три стержня , 28 4,9264cor
scA  = см2. По графику рис. 2,а 

0,6 435 261cor
sR МПа=  = . Бетон подвергся коррозии с двух сторон колонны, 5 xt см= ,

10 yt см= . Среднее снижение модуля упругости на этом участке составило 40%, то есть 

11000cor
bE МПа= . C учетом графика рис.1, в принимаем 51,4 10cor

sE МПа=  . Значения усилий 

из статического расчета следующие 900N = кН, 1 27fM = кНм, 2 12fM =  кНм, момент от 

случайного эксцентриситета в 1 см равен eM = 9 кНм. Размер очага коррозии d1=0,5м. 

Требуется определить значение горизонтальной внезапно приложенной ударной 

нагрузки, действующей на конструкцию в течение 1 с. Форма импульса прямоугольная.   

 

   
а) б) в) 

Рисунок 7 – Расчетная схема и сечения колонны с коррозионными повреждениями 
 

Определяем расчетные значения моментов для сечений S1 , S2 : M1 = 27+9=36 кНм,  

M2 = (27-12)/2+9=14,5 кНм.  Вычисляем уровень стеснения поперечных деформаций на 

приопорных участках 100 /12 8, (3)bС = = , используем рисунок 2, в, вычисляя 

0,75 8,625cor
b bR R= = МПа. Находим приведенный момент инерции с учетом коррозии трех  

стержней арматуры ( 3n = ) и поврежденной площади бетона, для упрощения расчетов в 

данном примере в пределах этой площади разбивку на слои не выполняем, тогда 1m = . При 

этом 0,85 27500 23375bdE =  = МПа, 1 40(10 5) 600b y xA t h t b= + = + = см2, 

 1600 600 1000bA = − = см2. 

3 5 5
2 235 30 2 10 1,4 10

6,158(40 / 2 5) 3 40 35 4,9264 (40 / 2 5)
12 27500 11000 600 23375 1000

cor
redI

   
= + − +    − = 

 +  
136263= см4. 

50,0015 1,4 10 6,158 2 6,158 4,9264
14, 0,00879, 0,00791

15 40 35 40 35
s s s  

   +
= = = = = =

 

2 214 (0,00879 0,00791) 2 14(0,00879 0,00791 5 / 35) 14(0,00879 0,00791) 1,651mx = + +  +  − + = см. 
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𝐴𝑟𝑒𝑑
𝑐𝑜𝑟 = 1600 − 600 +

(2⋅6,158+1,4⋅3⋅4,9264)⋅105

23375
= 1141,2 см2; До ударного воздействия 

136263 900
1,651 23,36

1141,2 4600

corx


= + =


см. 𝜉0
𝑐𝑜𝑟 = 0,6674 > 𝜉𝑅

𝑐𝑜𝑟 =
0,9

1+261/(1,4⋅105⋅0,0035)
= 0,587. 

Бóльшая часть сечения сжата, при ударе происходит уменьшение сжатой зоны (разгрузка 

части сечения) вплоть до величины  0,587 20,545cor cor
Rx h=  = , тогда в уравнении (13) 

учитываем только величину 20,545corx = см. Для использования уравнения (13) необходимо 

определить статический прогиб коррозионно-поврежденной колонны. Для этого можно 

использовать формулы (16), (17) или методику статьи [31]. Вычисляем предварительно 

жесткость неповрежденного и поврежденного сжатого сечения: 
5

5 2 40,15 0,15 27500000 213,3 10
0,7 0,7 2 10 4 0,15 6,158 10

(0,3 ) 1 (0,3 0,15)

b
s s

l e

E I
D E I

 

−
−  

= + = +       =
+  +

 

5 21,381 10 кН м=   , ,cor
corr red redD E I=

, 1,/ cor cor cor
b ser b red cor s s s s

red cor cor
cor s s

R x b E A E A
E

x b A A

  + +
= =

 + +
 

5 5
8 215 / 0,0015 14,355 30 1,4 10 3 4,9264 2,0 10 6,158

0,168 10 /
14,355 30 3 4,9264 6,158

кН м
  +    +  

= = 
 +  +

, 

𝐷𝑐𝑜𝑟𝑟 = 0,168 ⋅ 108 ⋅ 136263 ⋅ 10−8 = 0,2289 ⋅ 105кН ⋅ м2. 

Пользуясь формулой Симпсона и формой эпюры ( )tM F  (рис. 7, а), формулу (17) можно 

привести к виду (cм):  

( )
2

2 2 21 225 200 2 2
2 56,25 2 56,25 2 56,25 2 56,25

6 6 2,5 2,5
t t t tf F F F F

D

   
  =   +   +    −    +      

 

( )
2

2 21 50 2 2
2 56,25 2 56,25 2 56,25 0,0235 0,0812

6 2,5 2,5

0,01047

t t t t

corr

t

F F F F
D

F

   
  +   +    +    = +  =      

= 

 

Вычисляем критическую силу ( )
22 50,2289 10 / 0,5 4,5 44579AN =   = кН, эксцентриситет 

( )2 0,01047 001086 15,31/ (1 900 / 44579) (35 5) / 2fs t te F F+ − += − = см, 

( )1 (35 5) / 2 15fse = − = см. Находим значение tF  из условия прочности сечения 1S . 

Подставляем значения в уравнение (13), выражая значения в кН и см, при этом поскольку удар 

передается по неповрежденной части учитываем динамическое упрочнение материалов в 

правой части коэффициенты упрочнения принимаем такими же как в верификационной 

задаче: 

1,15 0,8625 25 20,545(35 0,5 20,545)
3600 450 / 8 900

1,2 26,1 (4,9264 6,158)(35
15

5)
tF

   −  + 
+  +    

  + − 
. 

Отсюда 56,25 12597 10414 3600 13500 105,1t tF F + − − → = кН. Для прямоугольной формы 

импульса значение статического эквивалента нагрузки с учетом произведения коэффициентов 

динамичности и динамического догружения, которое равно 1,5, составит 

( )105,1/ 1,5 1 70tdF =  = кН.  

При такой нагрузке напряженное состояние сечения S2, будет вызвано моментом:  
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( )1450 105,1 450 / 8 900 2, 0, 2011 005 71 15,3 254 2 кН смМ = +  +   + =  , предельный момент в 

этом сечении при отсутствии коррозии по формуле (8), определим обычным способом: 

0,493
1 0,493 1 0,3714

2 2

R
R R


 

   
= − = − =  

  
: 

( )2 2
2, 0 0 1,15 1,15 40 35 0,3714 1,2 43,5 6,128 2(35 5)S ult b R sc sc sМ R b h R A h a =    +   − =     +    − =  

24067 19928 43995 кН см М+ = = , прочность сечения обеспечена. Для сечения S1

, 11 12597 10414 2301 35911 1 500 3600 230 11 1fS lt su кН смМ М Ne = + = + == + = + кН см . 

Прочность обеспечена. Результаты расчета показаны на рисунке 8. Значение продольных сил 

округлялось до целого.  
 

 
  

а) б) в) 
 

Рисунок 8 – Напряженное состояние сечений колонны в момент предразрушения: расчетная схема (а); 

М𝑠𝑡 , М𝑑 , М𝑢𝑙𝑡– эпюры изгибающих моментов от статической, динамический нагрузок и предельного 

момента воспринимаемого сечением; продольные силы (кН), воспринимаемые элементами сечения (б); 

нормальные напряжения (МПа) после перераспределения усилий в предельном состоянии 
 

Как видно из рисунка 8, а предельное состояние возникает именно в заделке с 

коррозионным повреждением, на схеме рис. 8, б значение усилий, приходящихся на стержни 

от действия воспринимаемой продольной силы (11 кН), и изгибающего момента (95,11/0,3)/2 

 159 кН. С учетом нелинейной работы стали и ее размягчения при действии коррозии 

происходит перераспределение усилий и напряжений в стержнях. Каждый коррозионно-

поврежденный стержень может воспринять 26,1*4,9264  128 кН, тогда неповрежденный 

стержень воспримет оставшуюся продольную силу. Как видно из рис. 8, в, этот стержень 

деформируется в зоне упрочнения, т.к. напряжения 479МПа незначительно превышают 

предел текучести 432 МПа. Уровень пластических деформаций в корродированных стержнях 

cоставит при билинейной диаграмме деформирования 10((159+11)-128)/(4,9264)20000=0,0042, 

что в совокупности с упругими деформациями не превышает предельных деформаций разрыва 

стали.   

Следует отметить, что в настоящей статье в качестве примера рассмотрен один из 

частных случаев. В общем случае методика расчета по нормальному сечению распадается на 

четыре варианта. Первые два, когда сила располагается в очаге коррозии, при этом возможен 

удар как по деградировавшей, так и по неповрежденной части, третий и четвертый варианты, 

когда сила вне очага коррозии, а момент, ею вызванный, вызывает сжатие пораженной зоны 

либо неповрежденной зоны. Кроме того, в результате исходного статического нагружения 

может оказаться так, что ударная сила вызывает переходный процесс от сжатия к растяжению 

бетона и наоборот, как показано на рис. 4.   

Все это требует правильного учета констант и корректировки уравнений. Первый опыт 
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расчета показал, что методика дает несколько заниженные по сравнению с численным 

моделированием значения. Но следует также иметь в виду, что численные модели по 

сравнению с предложенной методикой в зависимости от модели бетона, учета сцепления, 

упрочнения, образования трещин и прочих факторов дают очень большой разброс в 

результатах, что заставляет усомниться в корректности такого инструмента для верификации 

этой задачи. Конечно, методика нуждается для дополнительной верификации и возможного 

уточнения в обширных экспериментальных исследованиях по получению коэффициентов 

динамичности, динамического догружения и закономерностях в деградации механических 

характеристик материалов.  Требует также разработки и метод расчета по наклонным 

сечениям. Экспериментальные исследования с тестированием корродированных конструкций 

еще впереди.  

 

4. Заключение 

1. Разработан метод аналитического расчета по нормальным сечениям коррозионно-

поврежденных сжато-изогнутых железобетонных элементов на поперечный удар. Он 

позволяет учитывать различные конфигурации и объемы коррозионных повреждений, 

дислокацию и размер очага коррозии, дискретность расположения рабочей арматуры и ее 

коррозионные повреждения для каждого из стержней, а также стеснение поперечных 

деформаций бетона, ограниченного связными контурами поперечной арматуры. 

2. Предложенные зависимости можно взять за основу при нормировании проверочных 

расчетов обследуемых конструкций, а также для учета повреждений в жизненном цикле 

зданий.  
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