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МЕТОД РЕШЕНИЯ ЗАДАЧ СТРОИТЕЛЬНОЙ МЕХАНИКИ, 

ОСНОВАННЫЙ НА ТЕОРЕМАХ КОШИ 
 

Аннотация. Представлен метод решения задач строительной механики, в основу 

которого положены теоремы Коши. Метод излагается на простых примерах: изгиб балок на 

упругом основании и колебаниях системы с одной степенью свободы. Дифференциальные 

уравнения представляются в обобщённых функциях, метод позволяет учитывать в уравнениях 

граничные и начальные условия. В правых частях записанных таким образом уравнений 

находятся параметры, определяющие как заданные граничные условия, так и неизвестные. При 

решении используется интегральное преобразование Фурье.   

Для определения неизвестных граничных условий используется условие аналитичности 

изображений Фурье функции перемещений в верхней комплексной полуплоскости (интегральная 

теорема Коши). Таким образом получается система уравнений для получения неизвестных 

граничных условий. При выполнении обратного преобразования Фурье используется теорема 

Коши о вычетах. В качестве примера приведено решение колебаний системы с одной степенью 

свободы с различными коэффициентами демпфирования.  
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A METHOD FOR SOLVING PROBLEMS OF STRUCTURAL 

MECHANICS BASED ON CAUCHY'S THEOREMS 

 

Abstract. A method for solving problems in structural mechanics is presented, based on Cauchy's 

theorems The method is presented using simple examples: beam bending on an elastic foundation and 

vibrations of a system with one degree of freedom. Differential equations are presented in generalized 

functions, which allows taking into account boundary and initial conditions in the equations. The right-

hand sides of the equations written in this way contain parameters that determine both the specified 

boundary conditions and the unknowns. The integral Fourier transform is used in the solution. 

To determine the unknown boundary conditions, the conditions for the analyticity of the Fourier 

images of the displacement function in the upper complex half-plane are used (the Cauchy integral 

theorem). Thus, a system of equations is obtained for obtaining unknown boundary conditions. When 

performing the inverse Fourier transform, the Cauchy residue theorem is used. As an example, the 

solution of oscillations of a system with one degree of freedom with different damping coefficients is 

given. 
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1. Введение 

При разработке метода решения воспользуемся интеллектом известных математиков, 

доказавшим теоремы в области фундаментальной математики, позволяющие эффективно, и 

даже, можно сказать, изящно решать задачи строительной механики и теории упругости. В 

основе метода будем использовать широко используемые в различных проблемах 

математического анализа теоремы Коши. 

Огюстен-Луи Коши окончил Парижскую Школу мостов и дорог в 1807 году. Несмотря 

на инженерное образование, стал величайшим математиком, труды которого заложили основы 

математического анализа, привели к разработке теории аналитических функций комплексного 

переменного. Его многочисленные труды в области фундаментальной и прикладной 

математики до сих пор широко используются при решении сложных задач в различных 

областях науки, включая строительную механику и теорию упругости. 

Отметим, что в современной математике все задачи, в которых решаются 

дифференциальные уравнения с начальными условиями, называются задачами Коши: 

например, задача Коши для волнового уравнения, задача Коши для уравнения 

теплопроводности и т.д.[1,2]. Приведём теоремы, которые будут использоваться в излагаемом 

методе. 

Интегральная теорема Коши. [3] Если функция f(z) - аналитическая в односвязной 

области G, ограниченной замкнутым контуром С, а также в точках этого контура, то: 

∫ 𝑓(𝑧)𝑑𝑧
𝐶

= 0                                                         (1) 

Эту теорему называют центральной теоремой теории аналитических функций 

комплексного переменного [3]. 

Теорема Коши о вычетах. [4] Интеграл от функции f(z), взятый по замкнутому 

контуру С, содержащемуся в области, где функция является однозначной и аналитической, 

за исключением изолированных особых точек однозначного характера, и не проходящему 

через особые точки, равен произведению суммы вычетов функции относительно всех особых 

точек, заключённых внутри С, на 2πi. 

Теорема о вычетах с многочисленными приложениями впервые была представлена в 

Мемуаре об определённых интегралах (1814). Несмотря на то, что теорема была доказана 

более двухсот лет назад, она мало известна инженерам-строителям и на практике используется 

редко. По-видимому, это связано с тем, что теория функций комплексного переменного и 

комплексные параметры представляются ими как нечто чисто математическое, абстрактное, 

не связанное с описанием поведения реальных сооружений. Но следует отметить и 

исключения. В 1960 году была опубликована работа Евгения Семёновича Сорокина [5], в 

которой для учета влияния демпфирования при колебаниях упругих систем было введено 

понятие комплексного модуля упругости. Введение комплексного модуля упругости 

позволило корректно учесть затухание колебаний, учитывая, что при колебаниях циклическая 

деформация отстает по фазе от циклического напряжения. Благодаря удобному 

математическому аппарату, теория, предложенная Е. С. Сорокиным, вызвала в печати 

многочисленные отклики. 

Следует отметить и зарубежных исследователей H. B. Seed и I. M Idriss, в работе 

которых [6] при анализе взаимодействия сооружений с грунтом при землетрясении 

используется комплексная жёсткость, включающая в себя параметры, характеризующие и 

жёсткость, и демпфирование. Отметим, что результаты этой работы используются в нормах 

по расчёту атомных станций на сейсмостойкость ASCE/SEI 4- «Seismic Analysis of Safety-

Related Nuclear Structures» [7,8]. 
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2. Методы и модели 

Для решения будем использовать обобщённые функции и преобразование Фурье. 

Обобщённые функции обладают замечательными свойствами, расширяющими возможности 

классического математического анализа. Преобразование Фурье обобщённых функций всегда 

существует. Применение техники обобщённых функций расширяет область математических 

моделей, упрощает элементарные операции [9,10]. Первое действие, предлагаемого метода 

решения задач будет заключаться в представлении дифференциальных уравнений в 

обобщённых функциях. 

Представление дифференциальных уравнений строительной механики в форме, 

учитывающей граничные и начальные условия 

Характеристической функцией ограниченной области Ω с границей S называется 

функция 𝜃Ω(𝑥) , равная 1 при 𝑥 ∈ Ω  и равная 0 при 𝑥 ∉ Ω . Характеристическая функция 

𝜃𝑎,∞(𝑥)  полуоси 𝑥 ≥ 𝑎  называется функцией Хэвисайда (единичной ступенькой) и 

обозначается 𝜃(𝑥 − 𝑎) [6]. 

 
Рисунок 1 - Функция Хэвисайда (единичная ступенька) 

Функция Хэвисайда позволяет описывать как разрывные силовые воздействия, так и 

разрывные характеристики элементов и сред. Теория обобщённых функций позволяет 

определить производную функции Хэвисайда, которая представляет собой функцию Дирака. 

𝛿(𝑥 − 𝑥0) =
𝑑

𝑑𝑥
𝜃(𝑥 − 𝑥0)                                          (2) 

Это выражение можно понять, используя графические изображения дельта-функции 

Дирака и функции Хэвисайда. 

 
Рисунок 2 - a) Кусочно-непрерывная функция 𝜽(𝒙); b) Производная кусочно-непрерывной функция 

𝜽(𝒙); с) Предел производной кусочно-непрерывной функция 𝜽(𝒙) при ε → 0 

Пусть Ω – ограниченная область с границей S, 

𝜃(Ω) = {
1, 𝑥 ∈ Ω

0,   𝑥 ⊄ Ω
                                                       (3) 

Тогда функция 𝑈(𝑥) = 𝑢(𝑥)𝜃(Ω) совпадает с функцией u(x) в области  Ω и равна нулю 

вне этой области. Пусть L дифференциальный оператор с постоянными коэффициентами в 

области Ω . Применяя дифференциальный оператор к функции U(x), получим 

дифференциальное уравнение, представленное в обобщённых функциях: 

𝐿𝑈(𝑥) = 𝑞(𝑥) + ∑ 𝜇𝑘𝛿(𝑘)(𝑆) + ∑ 𝛾𝑘𝛿(𝑘)(𝑆),                         (4) 

где q(x) в задачах механики – внешняя нагрузка, 

𝛿(𝑘)(𝑆) – дельта-функции и их производные, сосредоточенные на границе области S, 
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𝜇𝑘 – заданные значения функции u(x) и её производных на границах области S, 

𝛾𝑘 – неизвестные значения функции u(x) и её производных на границах области S 

При решении динамических задач в правых частях дифференциальных уравнений 

появляются начальные условия. Такое представление дифференциальных уравнений будем 

называть «представление уравнений в обобщённых функциях» Методику решения задач 

строительной механики на основании теорем Коши представим на примере балок на упругом 

основании. 

Полубесконечная балка на упругом основании 

В качестве примера рассмотрим полубесконечную балку на упругом основании (Рис.3). 

Классическое дифференциальное уравнение прогиба балки на упругом основании:  

𝐸𝐼
𝑑4𝑢

𝑑𝑥4
+ 𝑘𝑢 = 𝑞(𝑥),                                              (5) 

представим в обобщённых функциях, используя функцию: 

𝑈(𝑥) = 𝜃(𝑥)𝑢(𝑥),                                               (6) 

которая совпадает с искомой функцией при 𝑥 ≥ 0  и равна нулю при x< 0. 

 
Рисунок 3 -Модель полубесконечной балки на упругом основании 

Найдем первую производную произведения (6)  
𝑑𝑈

𝑑𝑥
= 𝐸𝐼 {

𝑑𝑢(𝑥)

𝑑𝑥
𝜃(𝑥) + 𝑢(𝑥)𝛿(𝑥)} = {

𝑑𝑢(𝑥)

𝑑𝑥
𝜃(𝑥) + 𝑢(0)𝛿(𝑥)}            (7)   

Использовалось следующее свойство дельта функции 𝑢(𝑥)𝛿(𝑥) = 𝑢(0)𝛿(𝑥) 

Производная четвёртого порядка функция U(x) имеет вид:  
𝑑4𝑈

𝑑𝑥4 =
𝑑4𝑢(𝑥)

𝑑𝑥4
[𝜃(𝑥)] + 𝑢(0)𝛿‴(𝑥) + 𝑢′(0)𝛿″(𝑥) + 𝑢″(0)𝛿′(𝑥) + 𝑢(0)𝛿′′′(𝑥)  (8) 

Подставляя полученное выражение в исходное уравнение, получим уравнение в 

обобщённых функциях:  

𝐸𝐼
𝑑4𝑈

𝑑𝑥4
+ 𝑘𝑈 = 𝐸𝐼[𝑢(0)𝛿‴(𝑥) + 𝑢′(0)𝛿″(𝑥) + 𝑢″(0)𝛿′(𝑥) + 𝑢(0)𝛿′′′(𝑥)]        (9)                                                

Разделиv левую и правую части уравнения (9), на жёсткость при изгибе и введём 

обозначение 
𝑘

𝐸𝐼
= 4𝛽4. Учитывая заданные граничные условия: 

𝑢‴(0) = −
𝑃

𝐸𝐼
;  𝑢″(0) =

𝑀

𝐸𝐼
= 0;                                           (10) 

получим:           
𝑑4𝑈

𝑑𝑥4
+ 4𝛽4𝑈 =

𝑃

𝐸𝐼
𝛿(𝑥) + 𝑢′(0)𝛿″(𝑥) + 𝑢(0)𝛿‴(𝑥)                                (11) 

Применим преобразование Фурье к обеим частям уравнения: 

𝑢̃(𝜈)[(−𝑖𝜈)4 + 4𝛽4] =
𝑃

𝐸𝐼
+ 𝑢′(0)(−𝑖𝜈)2 + 𝑢(0)(−𝑖𝜈)3                 (12) 

Изображение Фурье функции прогиба балки имеет вид: 

𝑢̃(𝜈) =
−𝑢′(0)𝜈2−𝑢(0)𝑖𝜈3+

𝑃

𝐸𝐼

𝜈4+4𝛽4
                                      (13)              

При выполнении прямого преобразования Фурье используется следующее 

представление:  

𝑢̃(𝜈) = ∫ 𝑢(𝑥)𝑒𝑖𝜈𝑥𝑑𝑥
∞

−∞
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и следующие свойства дельта функций и её производных 𝐹[𝐷𝛼𝛿] = (−𝑖𝜈)𝛼  

Параметры: угол поворота 𝑢′(0)  и прогиб 𝑢(0)  в начале координат - аналогичны 

константам интегрирования, которые определим в области изображений, используя теоремы 

Коши, не находя общих решений.  

Для определения функции прогиба необходимо выполнить обратное преобразование 

Фурье следующего выражения  

𝑢(𝑥) =
1

2𝜋
∫

−𝑢′(0)𝜈2−𝑢(0)𝑖𝜈3+
𝑃

𝐸𝐼

𝜈4+4𝛽4

∞

−∞
𝑒−𝑖𝜈𝑥𝑑𝜈                                      (14)            

Подынтегральное выражение представляет собой комплексную функцию 

комплексного переменного. Поскольку плоскость 𝜈  двумерна (𝑅𝑒𝜈, 𝐼𝑚𝜈) , существует 

большая свобода в понимании того, что представляет собой комплексный интеграл. 

Интегрирование функций комплексного переменного выполняется вдоль линий, называемых 

путём или контуром интегрирования [4,13]. Результатом вычисления интеграла по контуру 

является комплексное число или выражение. В отличие от аналога для действительных 

переменных, эта величина не имеет физической интерпретации, например площади под 

кривой. Для вычисления интеграла воспользуемся интегрированием по контуру и теоремой 

Коши о вычетах. 

Для этой цели найдём корни знаменателя подынтегрального выражения  
4 44 0 + =

. При извлечении корней и возведения в степень комплексных чисел удобно использовать 

представление чисел в полярной форме. Поэтому представим корни в дух формах:  

𝜈1 = √2𝛽𝑒𝑖
𝜋

4 = 𝛽(1 + 𝑖);              𝜈2 = −√2𝛽𝑒−𝑖
𝜋

4 = −𝛽(1 − 𝑖); 

𝜈3 = −√2𝛽𝑒𝑖
𝜋

4 = −𝛽(1 + 𝑖);         𝜈4 = √2𝛽𝑒−𝑖
𝜋

4 = 𝛽(1 − 𝑖).                       (15) 

Расположение корней на комплексной плоскости представлено на рисунке 4. 

 
Рисунок 4 - Схема расположения корней знаменателя подынтегрального 

выражения на комплексной плоскости 

Учитывая, что подынтегральное выражение на контуре C при больших значениях 

радиуса при х>0 стремится к нулю для вычисления несобственного интеграла- функции u(x) 

при х>0, выберем замкнутый контур, состоящий из дуги, расположенной в нижней 

полуплоскости и действительной оси (Рис.5). 
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Рисунок 5 - Контур интегрирования для вычисления интеграла (14) при x>0 

В соответствии с теоремой Коши интеграл, взятый по замкнутому контуру равен сумме 

вычетов относительно всех особых точек, попадающих внутрь контура. В нашем случае это 

точки ν3 и ν4. Ввиду того, что подынтегральная функция имеет вид: 𝜓(𝜐) =
𝐹(𝜈)

𝐺(𝜈)
, где 𝐹(𝜈) ≠ 0 

при ν= ν3 и ν= ν4 и производные знаменателя 𝐺′(𝜐3) ≠ 0  и 𝐺′(𝜐4) ≠ 0 так же в этих точках не 

равны нулю, вычеты 𝜓(𝜐) определятся выражениями: 

Выч. 𝜓(𝜐)  = 
𝐹(𝜈3)

𝐺′(𝜈3)
 + 

𝐹(𝜈4)

𝐺′(𝜈4)
                                        (16)  

Используя эти соотношения представим интеграл (23) в виде суммы вычетов: 

𝑢(𝑥) =
2𝜋𝑖

2𝜋

1

4
{[−𝑖𝑢(0) −

𝑢′(0)

𝜈3
+

𝑃

 𝜈3
3𝐸𝐼

] 𝑒−𝑖𝜈3𝑥 +   

+[−𝑖𝑢(0) −
𝑢′(0)

𝜈4
+

𝑃

 𝜈4
3𝐸𝐼

]𝑒−𝑖𝜈4𝑥}                               (17) 

Отметим, что в полученном выражении находятся два неизвестных параметра угол 

поворота  𝑢′(0)  и перемещение конца балки 𝑢(0) . Для определения этих параметров 

воспользуемся интегральной теоремой Коши. 

Для определения функции   u(x) при х<0, необходимо выбрать замкнутый контур, 

состоящий из дуги, расположенной в верхней полуплоскости и действительной оси (рисунок 

6). 

 
Рисунок 6 - Контур интегрирования для вычисления интеграла (14) при x<0 
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Так как при х<0 функция должна быть тождественно равна нулю u(x)=0, интеграл по 

замкнутому контуру, состоящему из действительной оси и дуги полуокружности, должен быть 

равен нулю. В соответствии с интегральной теоремой таком случае функция в замкнутом 

контуре должна быть аналитической. Поэтому в верхней полуплоскости не должно быть 

особых точек (на рисунке отмечены красным цветом). Для того, чтобы исчезли эти особые 

точки, необходимо чтобы числитель делился без остатка на (𝜈 − 𝜈1)  и (𝜈 − 𝜈2). 

Аналитическую функцию можно аппроксимировать с любой степенью точности 

многочленом (теорема Вейерштрасса) [11,12]. Обозначим числитель 𝐺(𝜈). В соответствии с 

теоремой Безу остаток от деления многочлена на одночлен (𝜈 − 𝜈𝑖), который равен значению 

делимого при 𝜈 = 𝜈𝑖 должен быть равен нулю: 𝐺(𝜈𝑖) = 0. Таким образом, получаем систему 

двух уравнений для определения угла поворота 𝑢′(0) и перемещения конца балки 𝑢(0). 

−𝑢′(0)𝜈1
2 − 𝑢(0)𝑖𝜈1

3 +
𝑃

𝐸𝐼
= 0 

−𝑢′(0)𝜈2
2 − 𝑢(0)𝑖𝜈2

3 +
𝑃

𝐸𝐼
= 0                                            18) 

Коэффициентами этой системы уравнений являются корни знаменателя 

подынтегрального выражения й 𝜈1  и 𝜈2  в соответствующих степенях. Решив систему 

уравнений, получим: 

𝑢(0) = −
𝑃

2𝛽3𝐸𝐼
; 𝑢′(0) =

𝑃

2𝛽2𝐸𝐼
                                    (19)  

Подставив найденные значения в решение (26), представленное в виде суммы вычетов, 

получим: 

𝑢(𝑥) =
𝑃

2𝐸𝐼𝛽3 𝑒−𝛽𝑥𝑐𝑜𝑠𝛽𝑥                                           (20)  

Для определения прогиба полу бесконечной балки от пары сил, приложенной к концу 

балки с моментом равным М необходимо в уравнении (20) заменить сосредоточенную силу 

сосредоточенной парой сил. В результате получим: 
𝑑4𝑢

𝑑𝑥4 + 4𝛽4𝑢 =
𝑀

𝐸𝐼
𝛿′(𝑥) + 𝑢′(0)𝛿″(𝑥) + 𝑢(0)𝛿‴(𝑥)                           (21) 

Таким же образом можно определить изгиб балки на заданные кинематические 

воздействия: угол поворота 𝐸𝐼𝑢′(0)𝛿″(𝑥) и EI𝑢(0)𝛿‴(𝑥) 

Отметим, что все эти воздействия имеют размерности распределённой нагрузки. 

Балка конечной длины 

В качестве второго примера краевой задачи рассмотри балку конечной длины на 

упругом основании (рисунок 7). 

 

 
Рисунок 7 - Модель балки конечной длины на упругом основании  

Внешняя нагрузка: 𝑞(𝑥) = 𝑃1𝛿(𝑥 + 𝑎) + 𝑀𝛿′(𝑥) + 𝑃3𝛿(𝑥 − 𝑏) 

Заданные граничные условия: 𝑄(−𝑙) = 0;  𝑄(𝑙) = 0;   𝑀(−𝑙) = 0;  𝑀(𝑙) = 0.  
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Неизвестные граничные условия: u(-l); u’(-l); u(l); u’(l) 

Дифференциальное уравнение изгиба балки имеет вид: 

𝐸𝐼
𝑑4𝑢

𝑑𝑥4
+ 𝑘𝑢 = 𝑞(𝑥)                                        (22) 

Представим дифференциальное уравнение в обобщённых функциях. Для этой цели 

запишем функцию прогиба в виде произведения: 

U(x)=u(x)[θ(x+l)-θ(x-l)]                                               (23) 

Выражение [θ(x+l)-θ(x-l)] представляет собой разность функций Хэвисайда и имеет 

следующий вид: 

 
Рисунок 8 - Разность Функций Хэвисайда 

Производная первого порядка: 

𝐸𝐼
𝑑𝑈

𝑑𝑥
= 𝐸𝐼 {

𝑑𝑢(𝑥)

𝑑𝑥
[𝜃(𝑥 + 𝑙) − 𝜃(𝑥 − 𝑙)] + 𝑢(𝑥)𝛿(𝑥 + 𝑙) + 𝑢(𝑥)𝛿(𝑥 − 𝑙)}       (24) 

Производная четвёртого порядка финитной на интервале [-l,l] функция имеет вид: 
𝑑4𝑈

𝑑𝑥4 =
𝑑4𝑢(𝑥)

𝑑𝑥4
[𝜃(𝑥 + 𝑙) − 𝜃(𝑥 − 𝑙)] + 𝑢(−𝑙)𝛿‴(𝑥 + 𝑙) ++𝑢(𝑙)𝛿‴(𝑥 − 𝑙) + 

𝑢′(−𝑙)𝛿″(𝑥 + 𝑙) + 𝑢′(𝑙)𝛿″(𝑥 − 𝑙) + 𝑢″(−𝑙)𝛿′(𝑥 + 𝑙) + 𝑢″(𝑙)𝛿′(𝑥 − 𝑙) + 

+𝑢‴(−𝑙)𝛿(𝑥 + 𝑙) + 𝑢‴(𝑙)𝛿(𝑥 − 𝑙)                                        (25) 

Подставляя полученное выражение в уравнение (21), получим дифференциальное 

уравнение в обобщённых функциях: 

𝐸𝐼
𝑑4𝑈

𝑑𝑥4
+ 𝑘𝑈 = 𝑞(𝑥) + 𝐸𝐼𝑢(−𝑙)𝛿‴(𝑥 + 𝑙) − 

−𝐸𝐼𝑢(𝑙)𝛿‴(𝑥 − 𝑙) + +𝐸𝐼𝑢′(−𝑙)𝛿″(𝑥 + 𝑙) − 𝐸𝐼𝑢′(𝑙)𝛿″(𝑥 − 𝑙) +  

+ 𝑀(−𝑙)𝛿′(𝑥 + 𝑙) − 𝑀𝛿′(𝑥 − 𝑙) + +𝑄(−𝑙)𝛿(𝑥 + 𝑙) − 𝑄(𝑙)𝛿(𝑥 − 𝑙)     (26) 

Учитывая известные граничные условия: равенство нулю моментов и поперечных сил 

на концах балки, получим: 

𝐸𝐼
𝑑4𝑈

𝑑𝑥4
+ 𝑘𝑈 = 𝑞(𝑥) + 𝐸𝐼𝑢(−𝑙)𝛿‴(𝑥 + 𝑙) − 𝐸𝐼𝑢(𝑙)𝛿‴(𝑥 − 𝑙) + 

+𝐸𝐼𝑢′(−𝑙)𝛿″(𝑥 + 𝑙) − 𝐸𝐼𝑢′(𝑙)𝛿″(𝑥 − 𝑙))                                (27) 

Введем обозначение для правой части уравнения, в которую входит нагрузка и 

граничные условия Ψ(𝑥) , для которого напрашивается название «обобщённая нагрузка». 

Преобразуем полученное уравнение, разделим левую и правую части на жёсткость при изгибе 

EI и применим преобразование Фурье. В результате получим: 

𝑈̃(𝜈)[𝜈4 + 4𝛽4] =
1

𝐸𝐼
𝜓̃(𝜈)                                     (28)  

Из которого следует: 

𝑈̃(𝜈) =
1

𝐸𝐼

𝜓̃(𝜈)

𝜈4+4𝛽2
4                                               (29) 

где изображение Фурье обобщённой нагрузки определяется выражением: 

𝜓̃(𝜈) = 𝑞̃(𝜈)/𝐸𝐼 + [𝑢′(−𝑙)(−𝑖𝜈)2𝑒−𝑖𝜈𝑙 + 𝑢(−𝑙)(−𝑖𝜈)3𝑒−𝑖𝜈𝑙 

−𝑢′(𝑙)(−𝑖𝜈)2𝑒𝑖𝜈𝑙 − 𝑢(𝑙)(−𝑖𝜈)3𝑒𝑖𝜈𝑙]                                      (30) 

Изображение Фурье внешней нагрузка  

𝑞̃(𝜈) = 𝑃1𝑒−𝑖𝜈𝑎 + 𝑀(𝑖𝜈) + 𝑃2𝑒𝑖𝜈𝑏                              (31) 

Для определения функции перемещений необходимо выполнить обратное 

преобразование Фурье функции, определяемой выражением (29), в котором содержится 
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четыре неизвестных параметра.  Для определения этих параметров воспользуемся теоремой 

Винера-Пэли-Шварца [15,16], утверждающей, что преобразование Фурье финитной функции 

– целая функция. Для того чтобы функция 𝑈̃(𝜈)   была целой, необходимо чтобы числитель 

содержал нули знаменателя, т. е. должны выполняться четыре условия: 

𝜓̃(𝜈𝑗) = 0, 𝑗 = 1,2,3,4                                        (32)  

где 𝜈𝑗 – корни уравнения: 𝜈4 + 4𝛽4 = 0; 

𝜈1 = 𝛽(1 + 𝑖);  𝜈2 = 𝛽(−1 + 𝑖);  𝜈3 = −𝛽(1 + 𝑖);   𝜈4 = 𝛽(1 − 𝑖); 
Уравнения (32) представляют собой систему четырёх уравнений с четырьмя 

неизвестными. Решив полученную систему четырёх уравнений с четырьмя неизвестными, 

подставим найденные значения в выражения 𝜓̃((𝜈). Таким образом определяется изображение 

Фурье функции прогиба конечной балки при заданных граничных условиях. Для выполнения 

обратного преобразования Фурье воспользуемся алгоритмом дискретного быстрого 

преобразования Фурье. При дискретизации будем применять теорему Котельникова, широко 

используемую в теории передачи информации [17]. В соответствии с этой теоремой 

изображения Фурье финитной на интервале (-l,l) функции однозначно без потери информации 

определяется в точках, определяемых выражением: 

𝜈𝑗 =
𝑘𝜋

𝑙
    (𝑘 = 0, ∓1,  ∓2,   .  .  . )                          (33) 

Динамические задачи с начальными условиями 

В качестве примера рассмотрим колебания простейшей динамической системы 

(Рис. 9). 

 
Рисунок 9 - Модель простейшей колебательной системы  

Представим уравнение, описывающее свободные колебания простейшей колебательной 

системы: 

𝑚
𝑑2𝑢

𝑑𝑡2 + с
𝑑𝑢

𝑑𝑡
+ 𝑘𝑢 = 0                                                 (34) 

в обобщённых функциях, используя следующее представление искомой функции: 

𝑈(𝑡) = 𝑢(𝑡)𝜃(𝑡)                                                      (35) 

где 𝜃(𝑡) – единичная ступенчатая функция (функция Хэвисайда): 

0, 0,
( )

1, 0

t
t

t


 
= 



                                              (36)   

Первая и вторая производные этой функции имеют вид: 
𝑑𝑈

𝑑𝑡
=

𝑑𝑢

𝑑𝑡
𝜃(𝑡) + 𝑢(0)𝛿(𝑡),                                                     (37) 

𝑑2𝑈

𝑑𝑡2 =
𝑑2𝑢

𝑑𝑡2 𝜃(𝑡) + 𝑢(0)𝛿̇(𝑡) + 𝑢̇(0)𝛿(𝑡),                                  (38) 

где 𝛿(𝑡) и 𝛿̇(𝑡) – дельта функция и её производная.  

При вычислении производных используется следующее фильтрующее свойство дельта 

функции: 𝑢(𝑡)𝛿(𝑡) = 𝑢(0)𝛿(𝑡). Так как функция )(tU и её производные равны нулю при t < 0 

, а при t > 0 эта функция и её производные совпадают с функцией u(t) и её производными, 

значения 𝑢(0) и 𝑢̇(0) представляют собой начальное смещение и начальную скорость. Таким 

образом, уравнение (34) в обобщённых функциях принимает вид: 

𝑚
𝑑2𝑈

𝑑𝑡2 + 𝑐
𝑑𝑈

𝑑𝑡
+ 𝑘𝑈 = 𝑚𝑢(0)𝛿̇(𝑡) + 𝑚𝑢̇(0)𝛿(𝑡) + 𝑐𝑢(0)𝛿(𝑡).               (39) 
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В правой части этого уравнения содержится информация о начальных условиях и если 

задано внешнее воздействие выражение силы p(t). Преобразуем уравнение (34), разделив на 

массу и введя относительный коэффициент демпфирования. Разделив левую и правую части 

уравнения (10) на массу, получим: 

𝑢̈ + 2𝜉𝜔𝑛𝑢̇ + 𝜔𝑛
2𝑢 = 𝑢(0)𝛿̇(𝑡) + 𝑢̇(0)𝛿(𝑡) + 2𝜉𝜔𝑛𝑢(0)𝛿(𝑡)                        (40) 

где 𝜔𝑛 = √
𝑘

𝑚
 – частота собственных колебаний системы без учёта демпфирования, 

𝜉 =
𝑐

𝑐𝑐𝑟
=

𝑐

2𝑚𝜔𝑛
 – относительный коэффициент демпфирования (отношение реального 

демпфирования к критическому). 

Коэффициент критического демпфирования определяется зависимостью: 

                            скр = 2𝑚𝜔𝑛 = 2√𝑘𝑚 =
2𝑘

𝜔𝑛
                                        (41)      

В современных нормативных документах и технической литературе, посвящённой 

вопросам динамики сооружений для описания демпфирующих свойств, используется 

относительный коэффициент демпфирования, который наиболее удобен по сравнению с 

декрементом и логарифмическим декрементом колебаний [8,14].  

Пояснение и физический смысл этого параметра будет представлен ниже после 

получения решения.  В качестве примера приведём рекомендуемые значения относительных 

коэффициентов демпфирования из документа [8] при напряжениях, не превышающих ½ 

предела текучести. Для сварных стальных и слабо трещиноватых преднапряжённых 

железобетонных конструкций 𝜉  = (0.02–0.03). Для стальных болтовых и трещиноватых 

предварительно напряженных железобетонных 𝜉 = 0.05 − 0.07.  В общем можно отметить, 

что относительный коэффициент демпфирования строительных конструкций не превышает 0, 

1. 

Применив преобразование Фурье к обеим частям уравнения, получим уравнение: 

(−𝑖𝜔)2𝑢̃ + 2𝜉𝜔𝑛(−𝑖𝜔)𝑢̃ + 𝜔𝑛
2𝑢̃ = 𝑢(0)(−𝑖𝜔) + 2𝜉𝜔𝑛𝑢(0) + 𝑢̇(0)            (42) 

из которого следует: 

𝑢̃(𝜔) = −
𝑢(0)[(−𝑖𝜔)+2𝜉𝜔𝑛]+𝑢̇(0)

𝜔2+2𝜉𝑖𝜔𝑛𝜔−𝜔𝑛
2                                           (43) 

При определении изображений Фурье используются следующие свойства 

преобразований Фурье 𝑢̇(𝑡) ⟹ (−𝑖𝜔)𝑢̃(𝜔) ; 𝑢̈(𝑡) ⟹ (−𝑖𝜔)2𝑢̃(𝜔)   и 𝛿̇(𝑡) ⟹ (−𝑖𝜔) . Для 

получения функции перемещений, зависящей от времени, необходимо выполнить обратное 

преобразование Фурье: 

𝑢(𝑡) =
1

2𝜋
∫

u(0)[(−𝑖𝜔)+2𝜉𝜔𝑛]+𝑢̇(0)

𝜔2+2𝜉𝑖𝜔𝑛𝜔−𝜔𝑛
2 𝑒−𝑖𝜔𝑡𝑑𝜔

∞

−∞
                          (44) 

При вычислении интеграла воспользуемся теоремой Коши о вычетах. Для этой цели 

найдём корни знаменателя подынтегрального выражения: 

 𝜔2 + 2𝜉𝑖𝜔𝑛𝜔 − 𝜔𝑛
2 = 0                                    (45) 

Корни определяются выражением: 

𝜔1,2 = −𝜉𝑖𝜔𝑛 ± 𝜔𝑛√1−𝜉2 или       𝜔1,2 = −𝜉𝑖𝜔𝑛 ± 𝜔𝑑                             (46) 

где 𝜔𝑑 = 𝜔𝑛√1−𝜉2 – собственная частота колебаний системы с демпфированием.  

Положим, что значения относительного коэффициента удовлетворяют неравенству 0 <
𝜉 < 1 . В таком случае оба корня знаменателя расположены в нижней комплексной 

полуплоскости. Выберем контур интегрирования, состоящий из действительной оси и дуги 

бесконечно большого радиуса R, расположенной в нижней полуплоскости (Рис10). 
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Рисунок 10 - Контур интегрирования для вычисления интеграла (44) при 𝟎 < 𝝃 < 𝟏 

При положительных значениях времени 𝑡≥0   подынтегральное функция на дуге 

окружности стремиться к нулю, так как мнимая часть комплексной переменной ω принимает 

большие отрицательные значения на дуге R. В соответствии с теоремой Коши о вычетах 

интеграл по замкнутому контуру равен произведению сумме вычетов относительно 

изолированных особых точек, попадающих внутрь контура, на 2πi. Если подынтегральная 

функция 𝑓(𝜔) имеет вид 𝑓(𝜔) =
𝜑(𝜔)

ℎ(𝜔)
, а функция ℎ(𝜔) имеет простой ноль при 𝜔 = 𝜔1 (т. е. 

ℎ(𝜔1) = 0), вычет определяется по формуле: 

𝑅𝑒𝑠[𝑓(𝜔)]𝜔1
=

𝜑(𝜔1)

ℎ′(𝜔1)
                                      (47) 

Представим интеграл (44) в виде суммы двух интегралов. Первый интеграл 

соответствует движению при заданном начальном смещении и при начальной скорости 

равной нулю: 

𝑈1(𝑡) =
1

2𝜋
∫

𝑢(0)(−𝑖𝜔+𝜉𝜔𝑛)

𝜔2+2𝑖𝜉𝜔𝑛𝜔−𝜔𝑛
2 𝑒−𝑖𝜔𝑡𝑑𝜔

∞

−∞
                                    (48) 

Второй интеграл соответствует движению при заданной начальной скорости: 

𝑈2(𝑡) =
1

2𝜋
∫

𝑢̇(0)+𝜉𝜔𝑛𝑢(0)

𝜔2+2𝑖𝜉𝜔𝑛𝜔−𝜔𝑛
2 𝑒−𝑖𝜔𝑡𝑑𝜔

∞

−∞
                                    (49)                       

Интеграл 𝑈1(𝑡) равен сумме двух вычетов, умноженных на 2𝜋𝑖: 

 𝑈1(𝑡) =
2𝜋𝑖

2𝜋
{𝑅𝑒𝑠 [

[𝑈(0)](−𝑖𝜔+𝜉𝜔𝑛)𝑒−𝑖𝜔𝑡

𝜔2+2𝑖𝜉𝜔𝑛𝜔−𝜔𝑛
2 ]

𝜔=𝜔1

} + 

+
2𝜋𝑖

2𝜋
{𝑅𝑒𝑠 [

[𝑈(0)](−𝑖𝜔+𝜉𝜔𝑛)𝑒−𝑖𝜔𝑡

𝜔2+2𝑖𝜉𝜔𝑛𝜔−𝜔𝑛
2 ]

𝜔=𝜔2

}                               (50)   

Для вычисления вычетов понадобятся значения выражений производных 

знаменателя подынтегральной функции на корнях знаменателя. 

Знаменатель подынтегральной функции: ℎ(𝜔) = 𝜔2 + 2𝑖𝜉𝜔𝑛𝜔 − 𝜔𝑛
2 . 

Производная знаменателя подынтегральной функции: 
𝑑ℎ(𝜔)

𝑑𝜔
= 2𝜔 + 2𝑖𝜉𝜔𝑛 

Подставляя значения корней в выражение (48), предварительно найдя производную 

знаменателя, получим:  

𝑈1(𝑡) = 𝑢(0)
1

2
[𝑒−𝑖𝜔𝐷𝑡 + 𝑒+𝑖𝜔𝐷𝑡]𝑒−𝜉𝜔𝑛𝑡    или  

       𝑈1(𝑡) = 𝑒−𝜉𝜔𝑛𝑡𝑢(0) cos 𝜔𝐷 𝑡                                    (51) 

Вычисляя подобным образом интеграл (44), опуская промежуточные выкладки, 

получим: 

𝑈2(𝑡) = 𝑒−𝜉𝜔𝑛𝑡 𝑢̇(0)+𝜉𝜔𝑛𝑢(0)

𝜔𝐷
 𝑠𝑖𝑛𝜔𝐷𝑡                            (52) 
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Уравнение движение массы при задании начальной скорости и начального смещения: 

𝑈(𝑡) = 𝑒−𝜉𝜔𝑛𝑡 [𝑢(0) cos 𝜔𝐷𝑡 +
𝑢̇(0)+𝜉𝜔𝑛𝑢(0)

𝜔𝐷
𝑠𝑖𝑛𝜔𝐷𝑡]                (53) 

Вид функций, описывающих движение системы с одной степенью свободы с 

различными коэффициентами демпфирования 

В названии раздела не случайно используется слово движение вместо слова колебание. 

Это связано с тем, что при некоторых значениях параметра относительного демпфирования 

движение перестаёт быть колебательным. 

Для определения физического смысла критического и относительного демпфирования 

рассмотрим решения с различными коэффициентами демпфирования. 

Для этой цели удобно проанализировать движение системы, выведенной из состояния 

равновесия и отпущенной безначальной скорости: 

𝑈1(𝑡) = 𝑒−𝜉𝜔𝑛𝑡𝑢(0) cos 𝜔𝐷 𝑡                                  (54) 
При условии 0 < 𝜉 < 1  система совершает затухающие колебания с малым 

коэффициентом демпфирования. Расположение корней подынтегрального выражения в таком 

случае имеет вид, представленный на рисунке 10. При 𝜉 = 0  корни знаменателя 

действительные – расположены на действительной оси (рисунок 11). Решение описывает 

свободные не затухающие колебания. Колебаний такого типа в природе не существует, так как 

любые колебания не продолжаются бесконечно долго.   

 
Рисунок 11 - Корни знаменателя подынтегрального выражения при 𝝃 = 𝟎 

 Колебаний такого типа в природе не существует, так как любые колебания не 

продолжаются бесконечно долго. Расположение корней знаменателя при различных 

значениях   относительного коэффициента демпфирования от 0 до 1 показано на рисунке 12. 

 
Рисунок 12 - Расположение корней знаменателя при значениях 𝝃 от нуля до единицы 
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При 𝜉 = 0 корни действительные и равны собственным частотам системы без 

демпфирования. При 𝜉 = 1 корни кратные и чисто мнимые, равные  𝑖𝜔𝑛. В качестве примера 

на комплексной плоскости звёздочкой обозначены корни системы с относительным 

коэффициентом демпфирования 𝜉 = 0,6 , 𝜔𝑑 = 0,8𝜔𝑛 . Системы с такими большими 

относительными коэффициентами демпфирования используются в специальных 

конструкциях – в динамических абсорберах колебаний высотных зданий. Как уже отмечалось 

выше для строительных конструкций  𝜉 < 0,1.  
Примеры функций, описывающих колебания систем с разными относительными 

коэффициентами демпфирования: 0 < 𝜉 < 1; 𝜉 = 0; 𝜉 = 1 и 𝜉 > 1, представлены на рисунке 

13. 

𝜁 < 1  – при таком значении коэффициента демпфирования система, выведенная из 

состояния равновесия, совершает затухающие колебания. 

𝜉 = 1 – коэффициент демпфирования равен критическому скр, которое представляет 

собой наименьшее значение демпфирования с, при котором система, выведенная из состояния 

равновесия, без колебаний возвращается в состояние равновесия. 

𝜁 > 1 – при таком значении коэффициента демпфирования выведенная из состояния 

равновесия, без колебаний возвращается в состояние равновесия, но медленнее, чем при 

критическом коэффициенте демпфирования. 

 
Рисунок 13 - Графики свободных колебания системы с различными относительными  

коэффициентами демпфированием  

Графики такого рода приведены во многих монографиях и учебных пособиях по теории 

колебаний, среди которых следует отметить капитальную работу Anil K. Chopra   

DYNAMIC OF STRUCTURES Theory and Applications to Earthquake Engineering. 

3. Результаты исследования и их анализ 

Для приведенных выше моделей получены решения в аналитическом виде, которые 

согласуются с известными классическими вариантами решения данных задач. Метод хорошо 

применим для широкого спектра задач теоретической и строительной механики.  

Для полубесконечной балки на упругом основании получены уравнения для 

определения перемещения и угла поворота, а также описана методика расчета при различных 

вариантах нагрузок. 

В случае с балкой конечной длины видна универсальность метода при решении задач с 

различными начальными и граничными условиями. В данном случае четыре неизвестных 

параметра были найдены с использованием теоремы Винера-Пэли-Шварца, которая хорошо 

дополняет методику использования финитных функций. 

При решении задачи колебательной системы с одной степенью свободы показана 

применимость метода для решения динамических задач. Получено уравнение движения массы 

при задании начальной скорости и начального смещения. Показана эффективность 

использования метода в динамических задачах с учетом критического и относительного 

демпфирования. 
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4. Заключение 

1. Для решения задач строительной механики предлагается методика, в которой 

дифференциальные уравнения с начальными и граничными условиями записываются в 

обобщённых функциях. Это позволяет включить условия в саму структуру уравнений в виде 

дельта-функций и их производных. 

2. После преобразования Фурье неизвестные параметры определяются с помощью 

теоремы Коши, а для получения окончательного решения используется обратное 

преобразование Фурье (аналитически по теореме о вычетах или численно с помощью БПФ). 

Данный метод является теоретической основой для построения конечных и граничных 

элементов. 
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