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THE FORCE METHOD ALGORITHM IN THE FORM
OF A LOOP RESULTANT METHOD

Abstract. The object of research is the behavior of statically indeterminate frames under the
influence of temperature. The purpose of this work is to suggest a simple algorithm for the analysis of
framed structures by using the original idea of the loop resultant method. This basic loop is generated by
splitting the given structure into statically indeterminate loops instead of the conventional approach of
treating the redundant forces in the whole structure. The current approach allows to simplify the
calculation, thanks for using the loop compatibility conditions and by dealing with the primary unknowns
for each basic loop. The advantage of this presented approach is in simple structure of a system flexibility
matrix: the location of zero and non-zero blocks depend only on the numbering of loops. Different types
of flexibility matrices of the element-rods are established; it is shown how to build the compatibility matrix
for any loops with or without hinges; and the simple algorithm of the loop resultant method is developed.
Some numerical examples are performed to describe the presented algorithm in more detail.
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AJITOPUTM METOJIA CJI B ®OPME METOJIA
KOHTYPHBIX YCUJINN

Annomayun. O6vekmom uUCcie008anus AGNAEMCA pacyem CMamudecky HeonpeoeruMslx
CMePICHEBBIX CUCEM NpU MemnepamypHvix eo3delicmeusx. Llenb 0annoll pabomsi - npeonoxicums
NPOCMONL AN2OPUMM PACHEMA CIEPHCHEBBIX KOHCMPYKYULL ¢ UCHOTIb308AHUEM UOeU MeMOOd KOHNYPHBIX
yeunuil. bazogvie konmypel onpedensiiomes nymem paszoenenust OGHHOU KOHCMPYKYUU HA CIMAMu4ecKu
Heonpeoenumble KOHMYpbl MeCmo MpaouyuoHHO20 N00X00d K Y4emy JUUHUX HeU38eCHbIX Memood
cun 60 eceu koucmpyxkyuu. Ilpeonacaemviii n00X00 nNO360Jsem YNPOCmMuUms paciem 01a200aps
UCHONIb30BANHUIO YCIOBULL COBMECMHOCIU KOHMYPHLIX Oeopmayuil U asmomamuyeckomy eblbopy 6
Kauecmee JUWHUX HeU3BeCMHbIX - YCUIUl 018 Kajcoo2o 6a306020 kowmypa. Ilpeumywecmeo
NpeoCcmagieHHo20 No0X00d 3aKNI0YAemcs 8 NPOCMOU CIMPYKIMype Mampuybl CUCHEMbl YPAGHEHUN —
mMampuybl ROOAMAUBOCTNU KOHCMPYKYUU. PACTIONIONCEHUE HYNeblX U HEHYNeblX OIOK08 6 KOMOpou
3a6UCUM MOTLKO OM Hymepayuu KoHmypog. Ilocmpoenvl 6 a6HOM ude mMampuybl HOOAMAUSOCHIU
INEMEHMOB-CMEPACHEU Ol NPOU3BOTLHOU CUCHEMbl  KOOPOUHAM, U3ONCEH CHOCO6 NOCMPOEeHUs:
mMampuy coemMecmHocmu 0ehpopmayuii 05 NPOU3BOTbHBIX KOHIMYPOS, pa3padoman npocmou ancopumm
Memooa KOHmypuwix ycunuil. Ilpusedenvt Hekomopbvle yucieHHvle npumepwvl 01 Oonee NoOpoOHO20
ONUCAHUA NPEOCTNABNICHHO20 ANOPUMMAL.

Knitoueswie cnosa: memoo cui, memoo KOHMYPHLIX YCUAUU, MAMPUYA NOOAMIUBOCTHU, MAMPUYA
COBMECMHOCMU, CIEPIHCHEBbLE CUCIMEMDI.

1.Introduction

In architecture and construction, the issue of evaluating the stress-strain state of a building
structure and its structural components under static or dynamic effects using an advanced
computational model with high reliability of the results is also of great concern.
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Thus, the main direction of the development of structural mechanics can be given as the
development of new models or the improvement of available computational models that are based on
well-known methods such as the force method, the displacement method, the finite element method,
or the hybrid numerical method. Over the past two decades, the force method (the flexibility method
or the method of consistent deformation) has been successfully applied to static and dynamic analysis
of structures.

The force method is commonly used in structural analysis for hand calculations; however it is
very difficult to apply it to complex structures in the convential approach by solving a system of
equations with so many unknows. Due to the development of matrix algebra and digital electronic
computer let to the development of automation of this method, which not only to get rid of the
computational difficulties but also to handle these problems efficiently by using the optimal
algorithms.

The advantages of the force method can be exploited for structural analysis by different
approaches, such as an orthogonal self-stress matrix for space truss structures with cyclic symmetry
[1], a structural analysis and optimization algorithm for determining the minimum weight of
structures with the truss and beam-type members [2], the formulation using energy principles for
design, optimization, and nonlinear analysis [3], the integrated force method, and the extended
integrated force method for studying the behavior of structures as trusses and frames [4,5].

Recently, the force method has been expressed as the finite element model, called the finite
element force method [6,7] or the finite element integrated force method [8]. In essence, these
methods use algebraic functions in combination with the versatility of the classical finite element
method as an effective mathematical tool to describe the deformation of structures with the objective
of free vibration and buckling analyses.

In structural analysis, two common approaches are used: 1) setting the structural stiffness
matrix based on the “finite element diSplacement” of the nodes in equilibrium conditions; 2) the
structural flexibility matrix is constructed by using the “finite element force” of redundant in
compatibility conditions. The comparison of these two approaches is shown in the paper [9].
Furthermore, the combination of the two approaches is also found in the paper [10]. Besides, the
effectiveness of the second approach is emphasized in papers [11,12]. Proposing the idea of “finite
element force” has been around for a long time, and it is used to build efficient models for structural
design, which has been developed strongly in recent years through many different paths. Many
scientists have continuously perfected the theoretical system based on this idea, and it can be divided
into the following main directions:

— The graph-theoretical force method [13];

— The integrated force method [4];

— The generalization of the flexibility method [14,15];

— The hybrid force-based method of the large increment method [16,17].

These works do not contain a sufficiently simple method for constructing flexibility matrices
for individual element-rod and the framed structure as a whole. This makes it difficult to create a
simple algorithm using the force method, which is convenient for programming. The main goal of
this work is to discuss the procedure of the finite element force method, which is based on the loop
resultant method [18] in static analysis of framed structures.

2.Materials and Methods

For the approach of the loop resultant method, it is possible to express the internal forces of
two nodal cross sections of the element-rod in terms of the resultant parameter at any point A (see
Fig. 1).
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Figure 1 — The first type of the element-rod

The current element-rod L (m) has the tangent and normal vectors t =t, ty]T , h=[n, ny]T

. . . . 0 1
respectively and the connection between them according to the expression t =cn, here ¢ :{ 1 0}
. Point C is called a mid-point of the element-rod.

Rigid consoles are connected to any point A and only this point is used for all element-rods
in the rod system. Thus, the behavior of all cross sections of the element-rod is expressed in terms of
the resultant force parameters F and M at this point A.

Then we can get three expressions of internal forces corresponding to the position of the cross
section (s) of the element-rod:

N(s)=Ft, L)
Q(s)=F'n, )
M(s)=F'[(-Ya) X I +M, ©)

where F =[F, Fy]T and M - the resultant parameters at point A, x,, and y,, - the coordinate

vector As, (...)" - the transpose of a matrix.
Besides, the strain energy formula can be used conveniently to derive the flexibility matrix of

an element-rod, is given by

L 2 2 2

wzlj(N (5), M (S)+Q(S)st, @
2 0 ki k2 k3

where L -the length of the element-rod, k, = EA - the axial stiffness, k, = El - the bending stiffness,

k, = kGA - the shear stiffness.

Substituting the expressions (1), (2) and (3) into the formula (4), we obtain a new expression
from the following 17 terms:

L L L L
W= %{kl(Ff [t2ds+ ., [tt,0s+ F,F, [t ds-+ F7 [t2ds)
1 0 0 0 0
1 L L L L
+ = (F2 [ yads + FF, [ (X ¥ )ds + FM [ (=Y, )ds + FF, [ (=X, ¥, )ds
kZ 0 0 0 0 5
L L L L L ( )
+Fy2_[xf\sds +F,M _[XAsds +F M j(—yAs)ds +F,M ijSds +M 2J'ds)
0 0 0 0 0

L L L L
+ki(FX2j n’ds+F, ij n,n,ds+F, FyI n,n,ds + Fyzj nZds)}.
3 0 0 0 0
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Then the expression (5) is rewritten in matrix form as follows:

w =10 : (6)
2
All A12 AlS FXZ FX Fy FX M 1 L
where A = A,, A, O= FF' FEM | A, = k_-[ X0
(sym.) A33 (sym.) M 2 20

1¢ 17 17 17 17
All=k—ftfds+—fnfds+k—jyf\sds, A33=—Ids, A, =k—I(—yAs)ds,
10 20

1 S, 1%, 1%,
Alzzk—lj'ttds+ Innds+ I( XnsYas)ds, Ay, = !tyds+k—3£nyds+k—2!xmds.

The foIIowmg physical equatlon can be established [18]:

_ oW (o) . %
oo
Substituting the expression (6) into the formula (7), we obtain
e=Ao, (8)

where ¢, o - the deformation and strain parameters of the element-rod, A is called the flexibility matrix
of the element-rod, which depends on the coordinate of point A.

After integrating the expression (5), we obtain a simple form of the flexibility matrix (3x3)
with the tangent and normal vectors t, n:

/ / /
All AlZ A13

A= A/22 A/23 ) (9)
(sym.) Ags
L L L L L
where A, =—t?>+—n’+ 2+ —yi AL =—Yue
L L 3 |_ L, L 3 L
Al = tt+—nn+ tt AL = t+—n+ 2+ —x2 .,

-L ;L
k_XAC’ Ag :k_’ Xac =Xa=Xchr Yac =Ya—Ye-

2 2

It is easy to see that the flexibility matrix of the first type (3x3) consists of two parts: a constant
Ac(3x3) and a modified part Aa(3x3). Thus, the expression (9) can be rewritten in the following
general form:

I
Ag =

A=A+ A, = QAQT + Ay, (10)
L y/zxc —XacYac  “Yac
L _ L 2
where A = dlag(— —+ H k—), A= K, Xac Xac |, and
(sym.) O
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t. n O
Q=|t, n, 0] -the orthogonal matrix (3x3).
0 0 1

In the case two points A and C coincide, the flexibility matrix of the first type without the part
An is obtained by the formula:

At o
A, =QAQ" = A7 0 |, (11)
(sym.) AP
3 3
where AT :th2 +Lnf +Lt§, AP -t A7 =£txty +£any . tt,,
k, " 12k, K, kK 12K,
3
ar=btpe b, Lo
Kk’ k¥ 12k

The remaining forms of the flexibility matrices are obtained for other types of the element-
rods using the energy “internal strain” of the first type which can be defined as follows:

W, = %GFA,O‘, , 12)

and the components "internal strain” of the first type of the element-rod in matrix form:
o =[F, F, MT. (13)

The element-rod is hinged at one end and free at the other (see Fig. 2).

Figure 2 — The second type of the element-rod

The components "internal strain” of the second type of the element-rod can be represented as
follows:
o, =[FK Fy]T' (14)

The second type of the element-rod is considered as the case when one hinge is added to the
first type of the element-rod, while the bending moment of node 2 is equal to zero. According to the
formula (3), we obtain

M =-y,,F +X.,F,. (15)

X

Substituting the formula (15) into the expression (13) and we get that the components “internal
strain” of the first type of the element-rod do not contain M:

o, =[F, Fy (=Ya2Fe + Xa, Fy )]T . (16)
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Then we can formulate the relationship between the components "internal strain™ of the first
and second types of the element-rods using the transformation matrix Hz, as shown below:

o, =Hpo,, (17)
0 ~Yaz '
1 X, |
Substituting the expression (17) into the formula (12), we obtain

1
where H, = {O

1 1
W, :E(Hlo'”)TAl(Hlo'”):EO'E(HlTA,Hl)O'”- (18)

Thus, the energy "internal strain™ of the second type of the element-rod has the following
formula:

1
W, :EJEAIIGII , (19)
where A, =H, A, H, - the flexibility matrix (2x2) of the second type of the element-rod is shown as
below:

3 3
(th2 + Ltj + Ltj) (thty - thty - thty)
k, * k7 3k, K, K, 3k,
A, = L . (20)
(sym.) (=t +—t; +—17)
k' ok 3k,

The element-rod with hinged ends (see Fig. 3).

Figure 3 — The third type of the element-rod

The third type of the element-rod is considered as the case when two hinges are added to the
first type of the element-rod or as another case when one hinge is added to the second type of the
element-rod, while the bending moment of node 1 is equal to zero, i.e., it is calculated by multiplying
the expression (2) by the length of this element-rod L: M, = N(s)L=0 and we get the following

expression:
F't=0. (21)

According to the equation (21), we have a connection between the components “internal
strain” of the second and third types of the element-rods:

H,o, =0y, (22)

where H, =[t, t,].
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In addition, the energy "internal strain™ of the third type of the element-rod can be written as
follows:

1
W, :§G|T||A|||O-m : (23)

Substituting the expression (22) into the formula (23), we have
1
Wi :E(Hzo-u)TAm(Hzau)- (24)

It is possible to consider the formula (24) as the expression of the energy "internal strain™ of
the second type of the element-rod and rewrite it as follows:

1
W, :EGE (HzTAm H,)o, - (25)

Comparing the expression (25) with the expression (19), we obtain
A, :H2TA|||H2' (26)

Multiplying both parts of the equation (26) by H, and H, respectively, we have

H,A,Hj =H,H] A, H,H,. (27)
Thus, the flexibility matrix (1x1) of the third type is
T L
Ay =H,AH, =|:E:|’ (28)

where H,H] =1.
The loop compatibility conditions are applied for the procedure in building an algorithm:

Condition 1. The sum of the degrees of each statically indeterminate loop should be equal to
the total degree of the entire statically indeterminate structure.

. .
n, =Znit =n2+nS +..+n. (29)
i

Condition 2. Basic loops can have one or several common element-rods and vice versa, but it is
necessary to satisfy the condition of independence of each loop, i.e., an individual element-rod must
appear at least once in the basic loop.

The algorithm of the loop resultant method can be described in the following steps:

Step 1. Choose the basic loop (see Fig. 4).

Figure 4 — The basic loop
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The compatibility equation of the basic loop i for the deformation should be expressed as
below:

€, € +E6, €= 0. (30)

Step 2. Determine the flexibility matrix of the element-rod A..
Step 3. Construct the flexibility block diagonal matrix:

A=diag(A,). (31)

Step 4. Establish the compatibility matrix Bi.
For the basic loop with two hinges:

B, =[H, H, H, -H,]. (32)
The basic loop with one hinge has

B.=[H, H, H, -H], (33)
and the basic loop does not contain the hinge:

B =[l, I, I, -], (34)

where I3 - the identity matrix 3x3.
Step 5. Complete the flexibility matrix of the framed structure:

L =BAB/. (35)
Step 6. Solve the system of equations:
L, X, =-Be,, (36)
where Xi - the redundant forces of the basic loops, eo - the initial deformation of the rod system.
Step 7. Compute the resultant system:
o, =B X,. (37)

3.Results and Discussion

The results of the loop resultant method are illustrated by numerical examples on different
ways of the combination of loops. Here we investigate the following:

First, we consider the triangular and square loops.

Second, we study how to extend the rod system.

The presented algorithm is applied to find bending moments for the following structures.

The element-rod of the structures has a square cross section with the depth h = 0.2 and length
L = 2, the Young’s modulus E = 3x10% (Pa), the temperature loads t1 = 15°C, t> = 5°C and the
coefficient of linear thermal expansion o.= 107 (C™1).

Consider an element-rod subjected to the temperature load. The axial deformation of an
element-rod i can be expressed as

A=Lta, (38)

where t - average cross section temperature.
The bending deformation of an element-rod i can be written as
0=L7a, (39)

where 7 - temperature gradient over the depth.
The temperature load on each element-rod can be expressed in matrix form as below:
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T=[A, 6 6, A, ... .. A, 6]. (40)
The basic loops (see Fig. 5).

Figure 5 — Various types of loops: (a) the triangular loop, (b) the square loop
Compatibility matrices of basic loopsiandj: B;=[0 1 0 1 -1], and
Bj:[—l -1 0 -1 0 21 0](1x8).

The temperature loads of element-rod 1 (Loop i) and element-rod 2 (Loop j):
T=[A, 6 0 0 O]ys andT,=[0 6, A, 0 0 O 0 0],g-

The results of basic loops are shown in table 1.
Table 1 — The result of bending moments of loops i and j

N The bending moment, N-m
° Loopi Loop j
1s 0.00 0.00
le +1242.0 0.00
2s -1242.0 0.00
2e,3s,3e 0.00 +600.0
4s 0.00
4e -600.0

Note: The numbers 1, 2, 3 and 4 describe the ordinal number of the element-rod, the value of
the bending moment at the start and end nodes of the element-rod denoted by “s” and “e”.
The combination of triangular loops (see Fig. 6).

Figure 6 — The plane frame: 5 element-rods

— . -1 0 0 0 010 -1
The compatibility matrix: B = :
0 -1 0 -1000 1],,
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1.61 -0.67
The flexibility matrix of the rod system: L =10‘6{ } .
(2x2)

(sym.) 161
The temperature load of element-rod 5: T, =[0 0 0 0 0 0 A; 6]y -

Table 2 — The result of bending moments of the plane frame: 5 element-rods

No The bending moment,
N-m
1s,1e,2s,2e,35 0.00
3e,4s -878.679
4e,5s 0.00
5e +1757.35

The combination of triangular and square loops (see Fig. 7).
L

S e
5 - 3
‘ =5
(1
1
LGy ¢ a\ _‘ .
4 (a) o C,
5 m
s G A E
b tl/
CS u_ti (1D
L C
(1)
¥
’ 2i ¥ A=l

Figure 7 — The plane frame: 6 element-rods

- . 0 -1000O0O0OTUO010 -1
The compatibility matrix: B = :
0 001001 -100 -1,

The flexibility matrix of the rod system: L =1O‘6{

1.61 0.67}
(sym.) 333 (2x2)

The temperature load of element-rod 3 (Case 1):
T,=[0 0 0 0 0 A; 66 00 0 0]yqy-

The temperature load of element-rod 6 (Case 2):
T,=[0 0 0 00000 0 A Glu-

The temperature load of element-rods 3 and 6 (Case 3):
T,,=[0 00 0 0 A, € 0 0 Ay Glpa-

Table 3 — The result of bending moments of the plane frame: 6 element-rods

N The bending moment, N-m
o Case 1 Case 2 Case 3

1s 0.00 0.00 0.00
le -270.97 | -1083.90 | -1354.88
2s,2e,3s +654.19 | -383.218 | +270.976

3e,4s,4e,5s,5e 0.00 0.00 0.00
6s -383.21 | +1467.12 | +1083.90

6e 0.00 0.00 0.00

N 4 (114) 2024
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The combination of square loops (see Fig. 8).

L
b c, 4
5 = D
(1) A
- t3
C5 \”.ts ( C\v‘ (I} C] L
t; \
~Yq
Asop—— @ 13y
&
b TN tz‘ll
G ’t(' ‘s at?
)l L
1
.‘Zy ( )

Figure 8 — The plane frame: 7 element-rods

The compatibility matrix:
-1 0 -10000O0O0O0OTO0OO

_{0 —1}
0000001001 -100 -1j,,

3.33 0.67
The flexibility matrix of the rod system: L =10 .
3.33 22)

(sym.)
The temperature load of element-rod 2 (Case 1):

T,=[0 6 A, 0 0 0 0 00 O0O0O0 0 0]y-
The temperature load of element-rod 6 (Case 2):

T,=[0 0 00O 00O OO0 & Ay 00 0]yy,-
The temperature load of element-rods 2 and 4 (Case 3):

T,=[0 6,6 A, 0 0 0 A, 66 00 0 0 0 0]yy,-

The temperature load of element-rods 2, 3 and 6 (Case 4):

T:6=[0 6, A, 0 0 0 A, 6 0 6 A, 0 0 0]y-

Table 4 — The result of bending moments of the plane frame: 7 element-rods

4.Conclusions

N The bending moment, N-m
h Case 1 Case 2 Case 3 Case 4
1s,1e,2s 0.00 0.00 0.00 0.00
2e +659.34 | -659.34 +857.14 +197.80
3s,3e,4s | +197.80 | -197.84 +857.14 +659.34
4e,5s,5e 0.00 0.00 0.00 0.00
6s -659.34 | +659.34 -857.14 -197.80
6e 0.00 0.00 0.00 0.00
7s +461.53 | -461.53 0.00 -461.53
7e +659.34 | -659.34 +857.14 +197.80

The finite element force method employs a basic idea from the loop resultant method. In this

work:
1. the expression of element flexibility matrix is given for any coordinate system;
2. it is shown how to build the compatibility matrix for any loops with or without hinges;
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3. an algorithm for constructing the system flexibility matrix is proposed, which makes it easy
to program the force method. The examples are studied to illustrate the capability of the loop resultant
models for structural design and analysis. In the future, this approach will be extended to carry out
dynamic responses and stability problems based on the structure flexibility matrix for the rod systems.
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