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STIFFNESS OF REINFORCED CONCRETE STRUCTURES UNDER
BENDING CONSIDERING SHEAR AND AXIAL FORCES (PART 1)

Abstract. The paper provides a physical and computational model for determining the
parameters of limit states of reinforced concrete structures under complex stress state such as
bending with effect of axial and shear forces. The forward and backward transitions for
determining the stiffness matrix coefficients of reinforced concrete bar structures with inclined and
normal cracks have been constructed on the basis of the adopted cross-section discretization
scheme and the duality theorem between force and deformation parameters by A.R. Rzhanitsyn.
Determination of the stiffness of structures in the zone of inclined cracks was performed on the
basis of the model of composite strips into which the zone with inclined cracks is divided. It is
assumed a hypothesis about the character of deformation distribution in a complexly stressed
reinforced concrete element with inclined cracks. For this model the effective shear modulus has
been obtained. It allows to determine the average relative linear and angular strains of concrete
and reinforcement at the point adjacent to the shear joint between inclined cracks. Using this model
and the experimentally obtained value of the relative shear in the inclined crack, the dowel forces in
the reinforcing bar crossed by the inclined crack were determined. The use of the obtained
analytical dependences in the practice of designing reinforced concrete structures allows to clarify
significantly the definition of displacements and width of opening of inclined and normal cracks, as
well as to bring the calculation and physical model based on experimental data as close as
possible.

Keywords: reinforced concrete, stiffness, physical model, computational model, inclined
crack, shear, dowel effect, composite bar.
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"KECTKOCTBD KEJE3OBETOHHBIX KOHCTPYKIWI TP N3I'MBE C
YYETOM NONEPEYHOM U MPOJOJbHOM CUJI (UACTD 1)

Annomayusn. Ilpusedenvt Qusuueckas u pacuémuas mooenb 01 onpeoeieHus napamempos
NpeoeNbHbIX COCMOAHUL JHCeNe300eMOHHbIX KOHCMPYKYUL NPU CLOHCHOM HANPAHNCEHHOM COCMOAHUU-
useube ¢ npoooavbHoU u nonepeuHvimu cunamu. Ha ocnose npumamoil cxemvi Ouckpemuzayuu
NONEPEeYHO20 CeveHUusi U meopembl OBOUCMBEHHOCMU MeNCOY CUNLOBbIMU U  O0epOopMAYUOHHBIMU
napamempamu A.P. Pocanuyvina nocmpoenvl npsamou u obpamuviii nepexoo Ois onpeoeieHus
KO3 uyuenmos mampuyvl  AHCECMKOCMU  AHCELE300EMOHHbIX — CIMEPIICHEBbIX  KOHCHPYKYUU  C
HAKJIOHHbIMU U HOPMATbHLIMU mpewunamu. OnpedeneHue HCECMKOCMU KOHCMPYKYULL 8 30He
HAKJIOHHBIX MPEWur 8bINOJHEHO HA OCHOGe MOOeIU COCMABHLIX NOJOCOK, HA KOmopble pazdoueaemcs
30HA C HAKIOHHbIMU mpewunamu. Ilpu smom npunama eunomesa o Xapakmepe pacnpedeneHus:
deghopmayuii 8 CLOHCHO HANPANCEHHOM JiCeNe300eMOHHOM dlleMeHme C HAKIOHHbIMU mpewunamu. Jnsa
MO MOOeaU NOJYHeH YCA08HbIN MOOYIb CO8UeAd NO3GOSIOWULL ONpedeisimb Cpeonue OMHOCUMENbHble
JuHelnble u yenosvie degpopmayuu OemoHvl U apmMamypbl 8 moyKe npuiesaioujeil K uey coguea meicoy
HAaKAOHHbIMU mpewunamu. Ha ocnose smoii moderu u ¢ UCNONBL3OBAHUEM DKCNEPUMEHMATLHO
NONYYEHHO20 3HAYEHUs CO8U2d 6 HAKIOHHOU mpewjuHe onpedeneHvl Hazelbhble YCUIUi 8
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CTpouTeNbCTBO U PEKOHCTPYKIUSI

aApMAmypHOM —CMEPICHe, NepeceKkaeMoM HAKIOHHOU mpewurou. Hcnonb3zoeanue NnomyYeHHbIX
AHATUMUYECKUX 3d8UcCUMOCmell 8 NpaKmuke NPOeKMUPOSAHU HCeNe300eMOHHbIX KOHCMPYKYULL
no360/aem He MOJbKO CYWeCMBeHHO YMOYHUMb onpedeieHue nepemewjeruti U WupuHsl packpblmus
HAKJIOHHBIX U HOPMAIbHBIX MPEeWut, HO U MAKCUMALbHO CONUZUMb PACYEMHYIO U UULECKYI0 MOOeb,
b6azupyrowWyI0Ca Ha IKCNEPUMEHMATbHBIX OAHHBIX.

Knroueevie cnoea: odicene300emon, i ecmrocmy, Qusuyeckas mMooenb, pacyémuas Mooeib,
HAaKIOHHAsL MPeWuna, cO8Ue, Ha2elb bl IPheKm, COCMABHOU CIMEPICEHD.

Intbaruction

The development of research on the creation of new calculation models with complex stress
states [1-4, 6, 7] is associated with an increase in the accuracy and reliability of calculation
reinforced concrete structures buildings and constructions. The main factor in the creation of
effective building structures is the emergence of new technologies at the convergence of physical
phenomena, theory and practice of calculation of reinforced concrete [5-9, 19, 20].

The main purpose of long-term experimental and theoretical research of inclined cracks for
bending elements, considering shear and axial forces, was to assess the crack resistance and strength
of reinforced concrete structures [10-22].

However, there are few researches [16-21] to determine the stiffness of structures
considering inclined cracks, including intersecting cracks. This article contains the developed model
for estimating the stiffness of reinforced concrete structures under bending taking into account
effect of shear and axial forces with inclined cracks using single composite strips in the block - in
the wedge and arch between inclined cracks. In addition, the approximation of rectangular cross-
sections using small squares in the stiffness matrix elements is also considered.

Based on the analysis of the research of N.I. Karpenko and S.N. Karpenko [23-25], in the

axial tensile reinforcement the "dowel” forces Qs and drift in the crack “s are obtained as a
function of the opening width and strains in concrete to the cosine of the crack slope angle (¢). The

experimental value " dowel " forces Qsexn and experimental drift in a crack dependence for the
connection between drift (A”C'EXF’) and shear span (a/ hO) are determined, also experimental

relationship between an anchoring zone length (and reinforcement strains [10] (£ 0s3),

The composite strip calculation model and approximation model for rectangular cross-
sections using small squares in the stiffness matrix elements

A new effect of the theory of reinforced concrete is established, the concept of conditional

modulus of joint (5 m) has been intbaruced based on the hypotheses presented in the papers [16-18,
22]. The conditional modulus of joint is defined in a single compound for the shear zone of the joint

for the difference of average relative linear and angular Zzxsiitthsi strains of reciprocal
displacements of the concrete (or reinforcement). This allows for reinforced concrete to reduce
A.R. Rzhanitsyn's system of differential equations by an order of magnitude and to obtain the total

angular strains 7zstichsumi of concrete in each shear joint and “dowel” effect of reinforcement
deformation. The physical characteristics stiffness matrix compressed zone of concrete and the
working reinforcement are derived in an equation system of static, deformation and physical
equations.

The bending element stiffness considering axial and shear forces is calculated by
approximation with small squares of the cross-sections of the structure with lateral inclined and

. . M i . N i -
normal cracks (figure 1). Bending moment  *e"d.J axial force " and shear force Qy diagrams
are plotted for a number of sections 1 to 6 in the crack area. The stiffness characteristics of the

sections with cracks D; (@i, j - 1, 2, 3) for equations from [19-21] are obtained in the system of

reinforced concrete blocks that is the wedges and arch in the area between inclined cracks ( e ).
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Figure 1 - Small-square approximation scheme in the tensile and compressed zones of a bending element cross-
section, taking into account the action of shear and axial forces and the presence of inclined and normal cracks

To solve the problem, we perform a direct transition with known forces M X, N Q put
1

1

A
unknown deformations is performed fx €0 and = Q:

1
+ = Piie Myx+Diga-N+Dig - Q
X

; (1)
€9 =Dgps- My+Dg34- N+Dgys- Q| @
A =Dgys- Mx+Dy3s- N+Dyg- Q| @)
write down the expression for MX from the equation (2):
My = (——D13* N-Diy .- Q)
Dll x Ix ] (4)
Find the values N from the equation (2):
1
N = 5 (60~ D31 -My —D3q +-Q)
3 . ©)
Find the values @ from the equation (3):
Q= (AQ —Dyggs+ My —Dgz- N)
D44 : ; ©)
We can then write down a system of equations:
1
——D13+-N=Djg+-Q
rX
M, =
D1y«
_ €0 — D14« My —Dgg - Q
D33 «
Aq — D41« "My —Dgz+-N
Q=
Dya «
(7)

Substitute the value of N from the second equation of this system into the first equation of
system (7):
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1 D33« —Diz N D13+ D3g«—Dsg« Digs

MX = . +80
i Di11+D3gs«—Digs- D3gs " Dyy«D3gs—Diga- Dy« Di11,+D33« —Dig«- Daps . ®)

Then substitute the value of MX from the first equation of this system into the second
equation of system (7)

N =gy Dll,* +i. 31,* +Q- 31,*D]_47* D]_]_’* 34,

D33 +Di1+ =D314Dig«  1x D3g«Digs —D314Digs D33 D11+ =D31+Dig ©)

Then let's substitute the obtained value My and from equation (8) and (9) into the third equation of
the system:

1
Q=Datrs —+Dagus- 20+ Dase- Ag

X
here the relevant coefficients are of the form D: ’ o
—Dyg+- Da3+ D3 Dyp
Das;sD114Dag+~DagoDige - Doy + Dago- Drge- Dy =Dy Dagr Duge+Dago- DipDrge=Dage- DuyiDays 49
Dyg« Dy3+—Dy3«- Dygx
Das +Cr1.Ds5~Daa Dy Dare By Drge- Doae=Dugs- Do Dugt Dugo DyaDige=Bigr BruDas 49y
Dll,*D33,*‘D13,*' D31,*
Da4+D11 D334~ Dag «D134+ D3p+Dags- Di3s- Das—Dags- Dyge Digs+Dazs- D314Digs—Dags DypuDas s  (13)

Substitute the value @ from equation (10) into equation (8) we obtain:

1
My =Digwe- =+ D1gee- &0+ Dign Ag
X

D41’** =

D43,** =

D44,** =

(14)
Here the relevant coefficients take the form of D:
D, D33x + Dag s - D13s - D34 —Dggu - D3z Dig
1% =
D11+D33+« —Dy3« - D3p« : (15)
D, —D13« + D43 4xD13 - D34+ —Dy34xD33 4+ Dig «
3%k —
D11,+D33+ —Di3« - D3g« : (16)
D44,>i<>x< : Dl3,>x< : DS4,>!< - D44,** : D33,* : Dl4,*
D14,** =
Dll,*D33,* - DlS,* : D31,>x< . (17)
Similarly for N we obtain:
1
N = D31’** - —+ D33’** C &t D34,** : AQ
x : (18)
Here the relevant coefficients take the form of D:
D e = —D31,% + Dagsx - D314D14 x —Dagas - DDz«
kk T
' D33.+D11,« — D31.+D13 4 : (19)
D D11+ + Dazsx © D31,4D14 « — Dag ss - Dr1,4D3g, %
33, %% —
D33,* D_I_l,* - D31,* D_|_3,>x< . (20)
Dg s - D31,+D14 « —Dag sx - Dr1+D3g «
D34,** =
D33,*D11,* - D31,*Dl3,* . (21)
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As a result, we can write the matrix D:

Dlly** D13,** D14,**
D= D31,** D33,** D34,** y
D41,** D43,** D
Dll,** ! D13,** ! Dl4,** ! DSl,** ! D33,** ! D34,** ! D41,** ! D43,** ! D
M, =D -i+D &9+ Dy A
X 11 %% r 13 0 14

X

44 x , (22)

where 44+ are defined from equation system:

Qs

1
giwe "+ Dz €9+ Dy oA

X

N=D 0

1
Q=Dy,.. 'r_+ Dy €0+ DygnAg.

X

Diiee s the second-level coefficient in the matrix elements in equation (22), which is
written in the form:
_ Dss,* + D41,** : D13,* : D34,* - D41,** : Dss,* : D14,*

11%
D11,*D33,* - D13,* ’ D31,*

D
: (23)

nsand Das (D =0) are the first-level coefficient in equations (19-21). The
D,.

D

coefficients are also obtained: Di. .

D

The coefficient 41~ in the matrix elements at the first level is determined from equation:

—D14-D33+ D34 Dy3

Dy1s=
D44D11D33-D44D13-D13+2D14-D13-D3g —D1q-D1g D33 ~D3g-DasDyy - oy

Here D11 - D14 are the coefficients in the matrix elements, at the first level are determined

according to the formulas SP 63.13330.2018.
Now perform the reverse transition when the curvatures and strains in the element cross-

section ri &y and AQ are known, but the forces M, N, Q are unknown:

1
My =Di1- —+Di3- &9+ D~ Aq
X -

(25)
1
N'=Dyg- —+Ds3- &0+ Das- Ag
X ; (26)
1
Q=Dus- =+Dss- 20+ Dus- Aq
X . (27)
Get the curvature values rl from the expression (25):
1 _My-Di3- 6-Dis- AQ
'x D11 , (28)

The values of axial strains 0 and drifts 2Q we obtain from expressions (26) and (27)
respectively:

Ne 6 (110) 2023 29



CTpouTeNbCTBO U PEKOHCTPYKIUSI

1
N- —Di3- D3~ AQ

X

&n =
s ; (29)
Q-Dug- rl—D34' £0
AQ = X
Dag . (30)
As a result, we obtain a system of equations similar to (22):

1 M,-Dy;-5-D,-AQ,

Iy D,
1
N - D13 '?_ D34 -AQ
& = x :
’ D
1
Q-D, '?_ D, - &
AQ = X .
D44 (31)

In the first equation of the system (31), substitute the strain value from the second equation
of the system:

1 D33 M —Du3 N o P13 Daa—Dig- Dag. AQ

. DyDy-Dig- Dy ’ Dy1Dg3~Di3- Diz- Dy1D33-Di3- Di3 . (32)

Then substitute the curvature values rl from the first equation of the system into the second

X

equation of the system (31):
_ Dy SN+ —Di3 , MX+D13' D14 —DgyDyg AQ
D33D11 - Di3- D3 D33D11-Di3- Di3 D33D11-Di3- Di3 (39
Now substitute the curvature value Ti and axial strains &, obtained from equations (32) and
(33) into the third equation of the system (313. The result is as follows:
AQ=Dygps- My+Dyz4 N+Dygs- Q _

Here the coefficients D are of the form:
—Dyg- D33+ Dgg- D3

€0

(34)

Dyy« =
D44D11D33 ~DagDr3- D13 +2D1g- Di3- Dag—Dyg- Dig- D3z —Dsg- DagDyy . (35
Dag s = D11D33 - Di3- Dig
" D44D11D33—DysDyg- Dy3+2Dy4- Di3- D3g —Dig- Dig- Dag—Dsg DagDiy . (36
Do = Dig - Dig—Dsq- Dy
43, =

D44D11D33 = DagDy3- D3 +2D1g - Dig- D3g—Dig- Dig- Dgg=Dag- Dby (39

And then substitute the value of AQ obtained from equation (34) into the expression (32)
and get as a result:

1
r_:Dll,*' My +Di3s- N+Dpgs- Q
X

Here the coefficients D are of the form:

; (38)
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D33+ D414 D13+ D3g—Dygg s+ Dig- D33

Prae = D11D33 -~ D13+ Dis ; (39)
D13*=—D13+D13' D34 D4z« —Dia- D3z Dy

| D11D33 - Dy3- Dig : (40)
Dya s = D13+ D3g- Dygg«—Dig- D3g- Dyy«

’ Dy1D33 - Dy3- Di3 : (41)

After that substitute the value of AQ from equation (34) into the expression (33) and we

obtain:
80:D31’*'MX+D33’*'N+D341*'Q _ (42)
Here the coefficients D are of the form:

Dy, %= Di3-Dig - Dag « —D34D11-Dag + —Dig

D33D11 —Di3- Di3 : (43)
Dyg, = Di1 + D13 - Dig - Dgg « — D34Di1 - Dag +
D33Dy1 —Dy3-Dy3 : (44)
Do, %= 213" D14-Dag . — D3aDiy -Dag .
34, % =
D33D11 —Dy3-Dig _ (45)
As a result, we obtain the following system for obtaining the coefficients of matrix D:
1

r—= Dll,* -M x T D13,* -N + D14,* Q,
X

&0 = D31,*'M x T D33,*'N +D34'*~Q;
AQI D41’* ‘M x T D43’* N+ D44,*'Q.

, (46)
here
Dys. = D13+ D3g- Dz —Dig- Dsz- Dyzs—Dig
’ D11D33—Dy3- Dy3 : (47)
Dyan = D13 D3sg- Dgg«—Dia- Daz- Dag
’ Di1D33 - Diz- Di3 : (48)
Dyp,* = Di3-Dig-Dyg« —DggDy1-Dygg « —Dig
D33Dy11 —Dy3-Dy3 : (49)
Dy, = Di1+ D13 Dig - Dyz « —D34Di1 - Dyg
D33Dy1 —Di3-Di3 : (50)
Dyg %= Di3-Dig-Dyg « —D34D11 - Dyg «
D33Dy1—Di3-Dig : (51)

_ —Dyg- D33+ D3y Dyg
D44P11033~DasDr3- D13 +2D1g- Di3- Dyg—Dig- Dig- D33—Dss- Dabyy. (5

Dy
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Dige = Dig- D13—Dsy- Dy
" DygD11D33-DyyDi3- Dy3+2Dy4- Dig- D3y —Dyg- Dyg- D33 —Day- DyyDyy . 53
; (53)
D D11D33 - D13~ Dyg
44

D44D11D33~DggDy3- D13 +2Dy4 - D3 D3y —Dig- Dig- D33 —D3s- DaaDiy 5y
Thus, the matrix elements Do are determined by the given transformations. And there is

also a direct transition 1 from the internal forces M X N , Q in the section of the structure to
1

deformations "x , €0 A,
The mathematical levels obtained are from the first to the second level, respectively.
Equations of a reinforced concrete composite bar and formulas for determining its
stiffness parameters

1

Write down the dependences for the axial strains <34, curvatures fyii and shear drifts

A
QX using the proposed discretization scheme of the section by small squares.

Axial strain “e9xii due to the bending of the neutral axis (N.A.) €boxii* obtained in [10,
16-21] has the form:

acrcO
Epoxji = €poxjix T
crc,0 . (55)
A . . - . . :
Here ““voxii js the internal additional axial strain caused by crack opening e from
acrco a‘crcO'kr
A&yoxii = A& oy ii = |
concrete spalling e or reinforcement strains ore0

internal additions of axial strain A&y and AEsoi fibers, located in the neutral axis
(i.e., point O*) of concrete or reinforcement.
1

Determine the curvature of the reinforced concrete element 'v.ii using the equation (56):

1 _ gn,up,i :‘s‘n,up,i_{_gn,d,iiA_i i =
TS Ah, M

BE nupi ~ ZnbAoi i M

(acrc'kr] +(acrc'er
_ gn,up,i +gn,d i + ICTC nup,i ICTC nd,

Ah, Ah, _ (56)

Here ©nwti and €naii are the strains in the upper and lower areas of one small square; A is the
1

Jl
small square height; "x/ is the internal addition from the crack opening e for concrete

A‘c"b,up,x,j,i =g kr /1 A‘gs,d Xl a'crc / Icrc )

cere or for reinforcement
Shear drift from shear force Q is:

Qi

AQ,b,Z = AQ,j,i +A()0n,b =m'ﬂg,b +Aadd,zx,b(kr )

; (57)
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Qi
AQ,S,Z = JA B 'UQ,S+Aadd,zx,s(kr)
6,(2)- 2

Hs . (58)

A
Here ~ @2 is the total shear drifts from shear force Bai as for a solid body, defined by

A

structural mechanics methods; ad axp (K ) is the internal (from crack opening) addition of drift

(i.e., Acrc,zx).
A
Then, determine the drift Q from the shear force in the inclined section. Then the

stiffness of the section in the zone of inclined cracks will be obtained through intersecting cracks

using the single composite strip model and the block that is wedge and arch e model in the area
of the curved axis for internal forces (figure 2).

a) b)
. T R T Ry & & © @ @ O
mdz ] [ I m.B; ; A=l Ax=1 Mv=1 A=  Ax=1 Ax-1
R0 gk =\ 22l 5 N
4 fy SR . Ry=0 X Y N
g B +H ":FJ: N, +AN, ™

hﬂ

M mAt NG |m.B M £0.5x 1"{1‘1’5 ,ﬂ“‘_
_.| g E TR 4_) T 1 1L___. Me |
: iz ,ﬂ'mq’ //?; o I"05 0 I
m.A; : ' : m.B, Ts i) ] » fﬂg <
C) = o Ns-ANs .

(h-x)cigl J' x-cigl
M;
I M; IM, ):)4 ), N, l(),
() ()4 usozymas

td

7

h.ctgl
6
ochL

b 5

| .
Figure 2 - Inclined (crossed) cracks and shear single composite strips (a); block - wedge and arches cre,l (b),

curved axis for internal forces (c)

The proposed hypothesis and model of composite bar [16-22] allows the system of
differential equations of Prof. A.R. Rzhanitsyn to be reduced by an order of magnitude in the
presence of cracks arising at an arbitrary point of shear joint.

Following [16-22] for the reinforced concrete composite bar model in question, it can be written:

Kim*7om = Eam. (59)
Tq =Kim Vom En =Emén (60)
T
T =—,
Sa (61)
T':T—:T—:]/T-l-A
S Sm : (62)
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TI

_l_AllTl_AlZTl_"'_AinTn :Alo;
ml

Tl
2 _AZlTl_AZZTZ _"'_AZnTn :Azo;
m,2

Tl

. _AniTi _AnZTZ _"'_AnnTn =AnO'

gm,n (63)
For calculated element with cracks:

NO.l + NO.Z _ f(Xcrc).

N ( Eb;I.Ab,l )ekv ( Eb,ZAb,Z )ekv ry (64)
1 1 f?
A= \/5 — é + (Xcrc ) :

+
(BoiPo)aw  (BpoAnz)ee M, (65)

T TZ, T, are the shear forces in the 1%, 2" ..., n™ bars accumulated along the

For (63) 1,
length of the bar to the section; gm,l, 5m,z, Smn are modulus in a single shear band of the joint, A is

the drift along a given direction; £am | Yom are the difference in the average linear and angular strains

of concrete and reinforcement in the joint point adjacent to the joint between adjacent cracks;

(EbiAbl)ekV, (Eb2A02 ) are the equivalent sectional stiffnesses [10, 16-22].

The experimental dependence of the crack drift Acrcop(@/ o)

data [10] graphically (figure 3):

is plotted from experimental

e {iz+4) e

A creexp ) (66)

45
Acrc’
4

35
3
25
2
1,5
1
0,5
0

0 1 2 3 4 El'%‘lO

Figure 3 - Dependency graph A — hi
0
The above exponent has the following characteristic points:

a,/h,=1 az/h0=3;p.3 A 1

pl-Ae,, = 4mm, - B3 T mm,

ag/hy=31
From equation (66) we obtain; 4=e ***+C . 15=e**"+C.1=e " 1C
The result is as follows: 4 =0,397512; A4 =-4,816204, C =-0,55847.
After the constants determination dependence (66) takes the form:

—0,397512(%—4,816204

0 ~0,55847 (67)
34 N 6 (110) 2023
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It is important to definite the dependence of the strains of the reinforcement 5 in the
anchoring zone (Fig. 2b) in the form of:

2
&-my=Al1"+B-1,+C

(68)
L =m A—gs.—ms’?’
T~ 's3 T 2
Here o is the coefficient and the parameters for the anchoring zone: "2, ;
g2 g
2
Ix _2|x X; C=0,
Then we obtain:
Mg, &g-Mg
gs'ms,szlsz 25| 'Ix _|52 25| ZIX'IX
x  “lx x  “ix (69)

Determination of deformations and tensions. After determining the shear bond force, the

axial force N; in each constituent element of the composite bar is determined from the expression:
0
Ni =Ny =Ti+Tin (70)

T T

where i, i+l are the total shear forces in the i"™ bars.

The internal moment M, in one bar element is equal:
_MPElL &TCET

i = ZEI = ZEl . (71)

Here Ci is the distance between centers of gravity of adjacent bars, separated by the i"" joint;

El . : :
Z is the sum of the stiffnesses of the elements of the composite bar.

The deflection of a bar composed of several elements can be obtained after determining total
bending moment:

M=M"°->Tc,M
E . (72)

The axial tensions and linear strains in each element of the composite bar are defined by the
expressions:

N, M,z
Oi=——+
Aix.i Ii . (73)
N; M.z,
Egi = +
E(1)A, E(A)I, (74)

Here Zj is the distance from the center of gravity of the cross-section of the i element of
the composite bar to the fiber in question.
Then the expression for the curvature of the composite bar is obtained:
1 M

o XE (75)

The axial force diagram of the composite bar is graduated in all the bars.
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Zj +Dbj

Consider the equilibrium of a prism of length dx and height i+1 cut from the i bar to

P in the it" bar. Project all forces onto the x-axis, we obtain:

B(z,)7 ZX=——j B(t)-o (t)dt+7,,
b , (76)

determine the tangential tensions

and taking into account the formula we get (73):
Ty = L|:_m F( Z; )_M—l—fi—l
B(z,)| F I, | (77)

Here F(Zi ), S(Zi) are the cross-sectional area of the i bar above the level i and the

static moment of this area in relation to the central axis of the i bar; B(Zi) is the section width at

the level of Zj. ; for a rectangular cross-section B(t)=B =const and §(z)=3S
Then taklng into account formulas (70) and (71), tangential tensions in each constituent bar

N io = const

at , are equal:

T, = 1 T TI_lF(Zi)—Q EIII‘S(ZI)-FZTiCi EIII S(ZI)+Ti_1
B(z,)| F YEL 1, FUYE (78)
0_ 0.
where Q =M .
The angular strains in each element of the composite bar are [19-22]:

T, < 2(1+v(A))
"*Te() T EA) (79)
The angular strains in each joint of the composite bar are:
7/zx witcn b — T'zx,stitch,b,i — sz,stitch,b,i — sz,stitch,b,i
' . Gm Gm ki,m"é:m . (80)
Find here the value | msichoi from the system of differential equations (63), i.e., find the

T jxstitch b

value of the tangential tensions
Then determine the additional force taking into account the "dowel™ effect in the stirrups.

The force in the stirrups from the axial force Qs for the block that is wedge and arch models is
taken into account separately [10, 24-26]:

A.ctgd
Q.= O ALY <Q, o0
n. (81)
_0.5a,,,sind—N B
S 0.5c0s 6 EXF"S_ (82)
Here "7+ is the transient coefficient before yield strength in the reinforcement n, =13-17
(in average "T- =10), and after yield strength is reached, at @ = s, - =20725 119 53 9g).

Q

see js experimental determined "dowel" force in the reinforcement.

The shear in the crack rACfC is found by the equation (67).
Tangential tensions and angular strains from the "dowel” effect are determined by the
expressions:
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Q, o/Actgd o.cctgd

T =

zx,stitch s, AS 77,A5 77, | (83)
and
Ve = Q. _ Pastichi _ Pastitchi __ O Cctgod
T AG, G, Kim S nr'ki,m'ém. (84)
The total angular strains of concrete and reinforcement are determined by the equation:
Y wxstitch.sum,i = ¥ zxstitchbi T 2xstitch s.i (85)

The jumps in the axial tension diagram in each shear joint are determined by the relation

e

Conclusions
Based on these studies, the following conclusions can be drawn.
1. Ascheme is proposed for approximating rectangular cross-sections of complexly stressed

. . . a .
reinforced concrete structures using small squares to determine the elements P4 of the matrix of

: . D D - .
stiffness characteristics from — 1™ to ~33™" and also built direct (for internal forces) and reverse,
1

M

A . .
(where, " ¢0and ~Qare known, but unknown V' X' N Q) transition to determine the

. . . D
coefficients - stiffness characteristics of the matrix ~ P9 (p, q - 1, 2, 3) of the compressed area of
concrete and tensioned working reinforcement in the system of equations, - static, geometric and
physical equations.

2. To solve the problems of determining the design parameters of the limit states of group II
in the zone of inclined (cross) cracks, a deformation model of single composite strips was
constructed that simulates deformations in the zone of inclined cracks, taking into account the
change in the position of the curved axis during the formation of cracks.

3. Rigidity of sections in the zone of inclined cracks of reinforced concrete structures under the

action of a bending moment M bend axial N and shear forces @ for the model of single composite
1

goyxy jviv*

. . . . My i
strips are found based on axial strains (from the neutral axis), curvature %)™ as well as

shear drifts Q’J"'*, taking the scheme of breaking down cross sections into small squares and
taking into account elastic-plastic strains in compressed concrete and working reinforcement.

4. Based on the proposed hypothesis about the nature of the distribution of strains in a

complexly stressed reinforced concrete element with cracks, the conditional shear modulus ng in
a single zone of a shear joint was obtained for average relative linear and angular strains from
mutual displacements of concrete and reinforcement at the point of the joint adjacent to the shear
joint between adjacent cracks. The use of this hypothesis allows us to reduce the order of the system
of differential equations of composite A. P. Rzhanitsyn and take into account the presence of cracks
in the structure.

Ne 6 (110) 2023 37



CTpouTeNbCTBO U PEKOHCTPYKIUSI

5. For shears and internal forces in the model of reinforced concrete composite bars, axial
stresses and linear strains in each component bar are obtained. The plot of axial and tangential
stresses (strains) in the cross section of a composite bar is stepped.

6. The gradient of the dependence of the crack shear on the diagram of axial and shear
stresses in each composite bar for each weld is determined by the ratio of the derivative of the shear
force in the i"" joint to the conditional shear modulus.

7. The dowel force in the reinforcement QS from the shear force in the inclined section was
obtained on the basis of the model of the support zone in the form of composite strips and the
experimentally determined shear value in the crack.
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