УДК 624.012.4

DOI: 10.33979/2073-7416-2019-86-6-29-36

К.Е. НИКИТИН 1 , С.Ю. САВИН 2 , Д.И. ЖУКОВ 2

 1 ФГБОУ ВО «Юго-Западный государственный университет», г. Курск, Россия, 2 ФГБОУ ВО "Национальный исследовательский Московский государственный строительный университет", г. Москва, Россия

ИССЛЕДОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЗОНЫ КОНТАКТА СОСТАВНЫХ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

Аннотация. Приведены результаты моделирования напряженного состояния, нелинейного деформирования и трещиностойкости бетонного шва контакта составной железобетонной конструкции. Моделирование выполнено методом конечных элементов в перемещениях с использованием программных комплексов SCAD и Лира САПР. Численно определены погонные нормальные и сдвигающие силы вдоль шва контакта, нагрузка образования трещин в элементах шва, приведенная погонная жесткость на сдвиг в шве в начале нагружения и после трещинообразования. Приведены результаты сопоставительного анализа вычислений значений с помощью объемных конечных элементов, приближенных аналитических зависимостей теории составных стержней и опытных диаграмм испытаний составных конструкций, а также численных исследований влияния геометрических параметров шва контакта на изменение напряженно-деформированного состояния в составной конструкции.

Ключевые слова: железобетон, составная конструкция, шов контакта, жесткость на сдвиг, трещиностойкость

K.E. NIKITIN ¹, S.Yu. SAVIN ², D.I. ZHUKOV ²

¹South-West State University, Kursk, Russia ² National research Moscow state university of civil engineering, Moscow, Russia

NUMERICAL STRESS-STRAIN STATE INVESTIGATION OF THE CONTACT ZONE OF COMPOSITE ELEMENTS MADE OF REINFORCED CONCRETE

Abstract. The results of modeling the stress state, nonlinear deformation and crack resistance of the concrete contact joint of a composite reinforced structure are presented. The simulation was performed by the finite element method in displacements using the SCAD and the Lira FEM software systems. The linear normal and shear forces along the contact joint, the load of crack formation in the joint elements, and the reduced linear shear stiffness in the joint at the beginning of loading and after crack formation numerically calculated. The results of comparative analysis of calculations of values using volume finite elements, approximate analytical dependencies and experimental testing of composite structures as well as numerical studies of the influence of geometric parameters of the contact joint on the change of the stress-strain state in the contact seam are presented.

Keywords: reinforced concrete, composite construction, joint of composite construction, shear stiffness, crack resistance.

Ввеление

Применение железобетонных составных конструкций в последние два-три десятилетия существенно выросло в связи с использованием для теплозащиты трехслойных несущих конструкций и особенно в связи с все возрастающим объемом реконструкции и необходимо-

стью усиления отдельных конструктивных элементов их наращиванием или подращиванием, в том числе с применением жесткой арматуры. В тоже время, специфика деформирования таких конструкций, несмотря на значительное число исследований по решению таких задач (см., например, [1-5]), учитывается недостаточно строго.

В действующих нормах [6] специфика таких конструкций вообще не рассматривается и даже сдвиг в контактных зонах (так называемых зонах межсредовой концентрации [7]), не учитывается деформативность контактной зоны, и приближенно оценивается лишь прочность дополнительным критерием для предельных состояний I группы.

В связи с этим в настоящей работе приведены некоторые результаты моделирования зон межсредовой концентрации составных железобетонных конструкций с бетонным и армированным швом контакта и другими конструктивными особенностями структуры составного сечения.

Расчетная модель

В качестве объекта исследования принята конструкция, состоящая из двух бетонных призм, соединенных между собой бетонным контакта шириной а и толщиной t (рисунок 1). Верхняя призма выполнена из тяжелого бетона класса B20, имеет сечение 100 x100 мм и длину 590 мм. Нижняя призма выполнена из легкого бетона класса B5 и имеет сечение 200 х 100 мм при длине 600 мм.

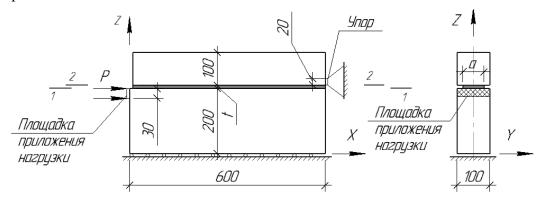


Рисунок 1 – Опалубочные размеры и схема загружения составной конструкции

Выбор объекта для исследований определен тем, что для таких конструкций физическими экспериментами [8, 9] получены опытные значения относительных смещений элемента вдоль шва контакта и значение приведенного модуля сдвига зоны контакта, что обеспечивает возможность проверки точности расчетной модели.

Для исследования напряженно-деформированного состояния использовался метод конечных элементов в перемещениях, реализованный в программном комплексе SCAD.

При создании расчетной модели конструкции применялась регулярная сетка объемных конечных элементов из элементов типа 36 (8-ми узловой изопараметрический элемент).

Материалы элементов предполагались линейно-деформируемыми на каждом шаге и каждой итерации нагружения. Модуль деформаций и коэффициент Пуассона материалов (бетона и арматуры) задавались в соответствии со значениями, полученными при испытаниях [8, 9]. Нелинейность деформирования бетона призм и шва контакт, при использовании программного комплекса SCAD, учитывалась шагово-итерационным нагружением конструкции с суммированием результатов в режиме «Вариация моделей» SCAD.

Граничные условия по нижней грани внешних элементов задавались в виде равенств нулю вертикальных перемещений в соответствующих узлах. Для закрепления конструкции от смещений в горизонтальной плоскости (вдоль оси Y), во всех узлах, расположенных на осях симметрии конструкции задавались равными нулю соответствующие перемещения. Закрепление по оси X осуществлялось в месте установки упора (рисунок 1).

Загружение осуществлялось поэтапно равномерно распределенной нагрузкой P по площадке, показанной на рисунке 1. В узлах по этой площадке так же устанавливалось условие совместности перемещений по осям X и Z, что позволяло моделировать приложение нагрузки подобно тому, как это осуществлялось в физических опытах [8, 9] - через жесткий штамп.

Исследовались конструкции с различными размерами контактного шва а и t.

Основные результаты и их анализ

Принятая расчетная модель позволила количественно оценить относительные взаимные смещения элементов составной конструкции, вычислить изменения приведенного модуля сдвига бетонного шва контакта (по терминологии [1, 11, 12]) при варьировании его размерами до и после трещинообразования, проанализировать картины напряженного и деформированного состояния в шве контакта. При этом, в качестве критерия трещинообразования принят предложенный в работе [2] критерий.

Анализируя картину расчетных значений относительных смещений вдоль шва контакта элементов армированной конструкции до и после образования трещин (рисунок 2), можно отметить значительный рост относительных взаимных смещений элементов составной конструкции после образования трещин вдоль шва контакта. Согласно исследованиям [2,7,9] после нарушения сплошности бетона шва контакта сопротивление сдвигу определяется нагельным эффектом арматурных стержней (для армированных элементов) и силами зацепления берегов бетона вдоль трещины. Сдвиговые деформации шва контакта при использовании для расчета упрощенной модели составного железобетонного стержня [2] могут быть описаны двух линейной диаграммой «нагрузка-смещение» («Q-Δ») (рисунок 3). Величина Q является равнодействующей распределенной нагрузки P, приложенной к составной конструкции, и связана с ней зависимостью: Q= 0,003 P.

При этом параметры этой диаграммы -приведенные жесткости шва контакта на сдвиг G_0 , G_1 могут быть вычислены с использованием рассматриваемой расчетной конечно элементной модели.

Был проведен так же расчет опытных конструкций по аналитической модели составного стержня [1].

При этом в качестве жесткостей G_0 , G_1 приняты значения, полученные обработкой результатов расчета по рассматриваемой конечно-элементной модели. Полученные графики смещений (рисунок 3) показывают удовлетворительное согласование результатов опытов и расчетов по МКЭ и по аналитической модели [1].

Расчет образования трещин между элементами составной конструкции выполнен по сложному напряженному состоянию в объемных элементах, которыми моделировали шов контакта. При этом погонная интенсивность касательных сил вычислялась по формуле:

$$T_{xz} = \tau_{xz} a. \tag{1}$$

Интенсивность нормальных растягивающих (сжимающих) сил в объемных элементах по высоте швов конструкции определены по формуле:

$$S_z = \sigma_z a. (2)$$

Здесь σ_z и τ_{xz} –нормальные и касательные напряжения (система координат - см. рисунок 1).

С использованием критерия [1] определена нагрузка трещинообразования Q_{crc} . Так, в шве контакта армированной составной конструкции сквозная трещина начинает формироваться при нагрузке 7,7 кН. Это значение в среднем на 35 % ниже экспериментального значения [8].

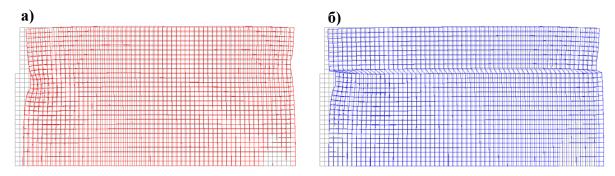


Рисунок 2 – Деформированная схема составной конструкции до (a) и после образования трещины в шве контакта (б) в масштабе 1:5000 для перемещений

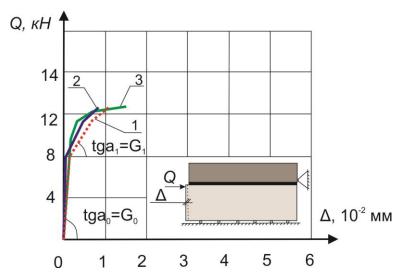


Рисунок 3 – Расчетные и опытные диаграммы «Q-∆»

1 – расчет МКЭ, 2 – расчет по аналитической модели [1], 3 – экспериментальные данные [8]

Эпюры касательных и нормальных погонных сил по длине шва, значения перемещений u, w (вдоль осей X и Z соответственно) при a=100 мм и t=10 мм неармированной составной конструкции приведены на рисунке 4.

Произведена оценка погрешности при использовании приближенной аналитической зависимости для определения приведенной жесткости на сдвиг шва контакта между железобетонными элементами [1]:

$$\bar{G} = \bar{G}_b + \bar{G}_{3\Pi},\tag{3}$$

где \bar{G}_b — приведенный модуль сдвига бетона зоны контакта; $\bar{G}_{\rm 3\Pi}$ — приведенный модуль деформаций связей зацепления.

По параметрам диаграмм рисунка 3 были вычислены значения начальной G_0 и секущей G_1 приведенной жесткости. Сопоставление G_0 , вычисленного по расчетной диаграмме «Q- Δ » (рисунок 3), по результатам эксперимента [8] и по формуле (3) показало вполне удовлетворительное их согласование. Расхождение значений G_0 не превышало 28 %.

Был проведен также анализ влияния на напряженно-деформированное состояние геометрических параметров t и a шва контакта (рисунки 5, 6).

Так, при изменении ширины шва a характер изменения перемещений и погонных нормальных и касательных сил в шве существенно не меняется. При увеличении ширины шва величины перемещений во всех точках шва уменьшаются, а значения погонных нормальных и касательных сил в крайних точках шва несколько возрастали (рисунок 5).

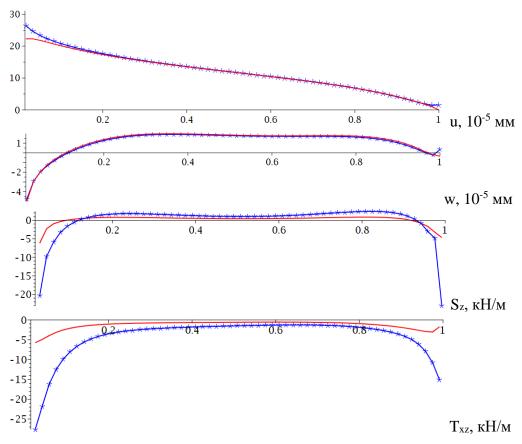


Рисунок 4 — Изменение значений перемещений (u,w), погонных нормальных (S_x) и касательных сил (T_{xz}) по высоте стыкового шва при Q=1 кH

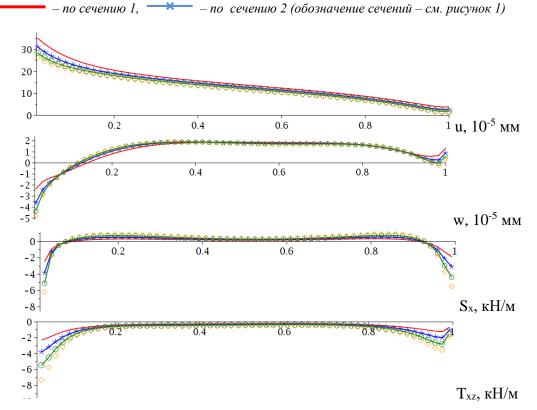


Рисунок 5 —Изменение значений перемещений (u, w), погонных нормальных (S_x) и касательных сил (T_{xz}) по высоте стыкового шва при различной его ширине а при Q=1 кH и t=10мм — a=40мм, — a=60мм, — a=60мм, — a=80мм, • • • • a=100мм

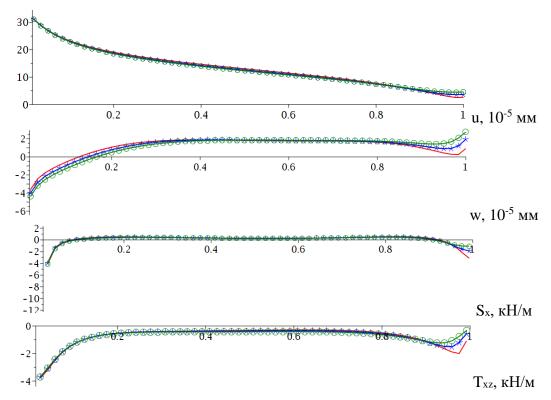


Рисунок 6 —Изменение значений перемещений (u, w), погонных нормальных (S_x) и касательных сил (T_{xz}) по высоте стыкового шва при различной его толщине t при Q=1 кH и a=60мм -t=10мм, -t=20мм, -t=30мм

При изменении толщины шва t значительных изменений в качественном характере перемещений и погонных сил в шве контакта не происходит (рисунок 6).

Таким образом, установлено, что геометрические размеры бетонного и железобетонного шва контакта железобетонной составной конструкции незначительно влияют на его сдвиговую жесткость и трещиностойкость.

Выводы

Предложена расчетная схема для конечно-элементного моделирования напряженнодеформированного состояния, трещиностойкости и жесткости зоны контакта элементов составной железобетонной конструкции.

Численно определены погонные нормальные и сдвигающие силы вдоль шва контакта, нагрузка образования трещин в элементах шва и получена приведенная эквивалентная погонная жесткость на сдвиг для шва контакта между железобетонными элементами в начале нагружения и после трещинообразования, которая может быть использована при расчете составных железобетонных конструкций с применением традиционной модели составных стержней.

Приведены результаты численного анализа влияния геометрических параметров зоны контакта на изменение напряженно-деформированного составной конструкции.

СПИСОК ЛИТЕРАТУРЫ

- 1. Колчунов В.И., Панченко Л.А. Расчет составных тонкостенных конструкций. М: Издательство ACB, 1999. 281c.
- 2. Баширов Х.З., Колчунов В.И., Федоров В.С., Яковенко И.А. Железобетонные составные конструкции зданий и сооружений. М: Издательство АСВ, 2017. 248с.

- 3. Федорова Н.В., Губанова М.С. Трещиностойкость и прочность шва контакта железобетонной коррозионно поврежденной составной балки-стенки при силовом нагружении // Научный журнал строительства и архитектуры. 2018. № 1 (49). С. 11-21.
- 4. Колчунов В.И., Скобелева Е.А., Клюева Н.В., Горностаев С.И. Экспериментальные исследования деформативности и трещиностойкости железобетонных конструкций составного сечения. // Строительная механика инженерных конструкций и сооружений. 2008. № 1. с. 54-60.
- 5. Kieslich H., Holschemacher K. Lateral Load Bearing Behavior of Timber-Concrete Composite Constructions. *Advanced Materials Research*. 2013. Vol.778, p.p.665–672. doi: 10.4028/www.scientific.net/amr.778.665
- 6. СП 63.13330-2018 «СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения». Москва. 2018. 143с.
- 7. Колчунов В.И., Колчунов В.И., Федорова Н.В. Деформационные модели железобетона при особых воздействиях // Промышленное и гражданское строительство. 2018. № 8. С. 54-60.
- 8. Колчунов Вл. И., Сапожников П. В. К оценке жесткости на сдвиг пограничного слоя в многослойных конструкциях из разных бетонов. // Сборник научных трудов РААСН центральное региональное отделение М.: 2002, выпуск 1 С. 9-13.
- 9. Федоров В.С., Баширов Х.З. Расчетная модель сопротивления сдвигу составного железобетонного стержня // Academia. Архитектура и строительство. 2017. № 1. С. 109-111.
- 10. Колчунов В.И., Колчин Я.Е., Стадольский М.И. Экспериментальные исследования по определению приведенной жесткости на сдвиг в железобетонных элементах составного сечения // Строительная механика и расчет сооружений. 2009. № 2 (223). С. 62-67.
 - 11. Ржаницын, А.Р. Составные стержни и пластинки. М.: Строииздат, 1986. 316 с.
- 12. Милейковский И.Е., Колчунов В.И. Неординарный смешанный метод расчета рамных систем с элементами сплошного и составного сечения // Известия вузов. Строительство. 1995. № 7-8. с. 32.

REFERENCES

- 1. Kolchunov V.I., Panchenko L.A. Raschet sostavnykh tonkostennykh konstruktsiy. M: Izd-vo ASV, 1999. 281 s.
- 2. ZHelezobetonnye sostavnye konstruktsii zdaniy i sooruzheniy / H.Z. Bashirov, V.I. Kolchunov, V.S. Fedorov, I.A. YAkovenko. M: Izd-vo ASV, 2017. 248 s.
- 3. Fedorova N.V., Gubanova M.S. Treshchinostoykost` i prochnost` shva kontakta zhelezobetonnoy korrozionno povrezhdennoy sostavnoy balki-stenki pri silovom nagruzhenii // Nauchnyy zhurnal stroitel`stva i arkhitektury. 2018. № 1 (49). S. 11-21.
- 4. Eksperimental`nye issledovaniya deformativnosti i treshchinostoykosti zhelezobetonnykh kon-struktsiy sostavnogo secheniya / V.I. Kolchunov, E.A. Skobeleva, N.V. Klyueva, S.I. Gornostaev // Stroitel`naya mekhanika inzhenernykh konstruktsiy i sooruzheniy. 2008. № 1. S. 54-60.
- 5. Kieslich H., Holschemacher K. Lateral Load Bearing Behavior of Timber-Concrete Composite Constructions. Advanced Materials Research. 2013. Vol.778, p.p.665-672. doi: 10.4028/www.scientific.net/amr.778.665
- 6. SP 63.13330-2018 "SNiP 52-01-2003 Betonnye i zhelezobetonnye konstruktsii. Osnovnye polo-zheniya". Moskva, 2018. 143 s.
- 7. Kolchunov V.I., Kolchunov V.I., Fedorova N.V. Deformatsionnye modeli zhelezobetona pri osobykh vozdeystviyakh. // Promyshlennoe i grazhdanskoe stroitel`stvo. 2018. № 8. S. 54-60.
- 8. Kolchunov VI. I., Sapozhnikov P. V. K otsenke zhestkosti na sdvig pogranichnogo sloya v mnogosloynykh konstruktsiyakh iz raznykh betonov. // Sbornik nauchnykh trudov RAASN tsentral`noe regional`noe otdele-nie. M.: 2002, vypusk 1. S. 9-13.
- 9. Fedorov V.S., Bashirov H.Z. Raschetnaya model` soprotivleniya sdvigu sostavnogo zhelezobetonnogo sterzhnya // Academia. Arkhitektura i stroitel`stvo. 2017. № 1. S. 109-111.
- 10. Kolchunov V.I., Kolchin YA.E., Stadol`skiy M.I. Eksperimental`nye issledovaniya po opredele-niyu privedennoy zhestkosti na sdvig v zhelezobetonnykh elementakh sostavnogo secheniya // Stroitel`naya mekhanika i raschet sooruzheniy. 2009. № 2 (223). S. 62-67.
 - 11. Rzhanitsyn, A.R. Sostavnye sterzhni i plastinki. M.: Stroiizdat, 1986. 316 s.
- 12. Mileykovskiy I.E., Kolchunov V.I. Neordinarnyy smeshannyy metod rascheta ramnykh sistem s elementami sploshnogo i sostavnogo secheniya // Izvestiya vuzov. Stroitel`stvo. 1995. № 7-8. 32 s.

Информация об авторах:

Никитин Константин Евгеньевич

ФГБОУ ВО «Юго-Западный государственный университет», г. Курск, Россия, кандидат технических наук, доцент, доцент кафедры уникальных зданий и сооружений. E-mail: niksbox@yandex.ru

Савин Сергей Юрьевич

ФГБОУ ВО "Национальный исследовательский Московский государственный строительный университет", г. Москва, Россия,

кандидат технических наук, доцент, доцент кафедры железобетонных и каменных конструкций.

E-mail: savinsyu@mgsu.ru

Жуков Дмитрий Игоревич

ФГБОУ ВО "Национальный исследовательский Московский государственный строительный университет", г. Москва, Россия,

аспирант кафедры железобетонных и каменных конструкций.

E-mail: <u>izhukovdmitry@mail.ru</u>

Information about authors:

Nikitin Konstantin E.

South-West State University, Kursk, Russia,

candidate in tech. sc., docent, associated prof. of the Department of unique buildings and structures.

E-mail: niksbox@yandex.ru

Savin Sergey Yu.

National research Moscow state university of civil engineering, Moscow, Russia,

candidate in tech. sc., docent, associated prof. of the Department of reinforced concrete and masonry structures.

E-mail: savinsyu@mgsu.ru

Zhukov Dmitry I.

National research Moscow state university of civil engineering, Moscow, Russia,

post-graduate student of the Department of reinforced concrete and masonry structures.

E-mail: izhukovdmitry@mail.ru